Experimental Work Conducted on MgO Long-Term Hydration

2008 Milestone Report

Haoran Deng, ¹ Yongliang Xiong, ¹ and Martin Nemer², Shelly Johnsen ¹

Repository Performance Dept. 6712
 Performance Assessment and Decision Analysis Dept. 6711
 Sandia National Laboratories
 Carlsbad Programs Group
 Carlsbad, NM 88220

TD 6/10/09RH WIPP:1.4.1.2:PA:QA-L:543261 543889 6/10/09RH

Information Only

1 of 140

APPROVAL PAGE

Author:	Haoran Deng, 6712	5-27-09 Date
Author:	Yongliang Xiong, 6712	May 27,09 Date
Author:	Martin Nemer, 6711	$\frac{S-27-09}{\text{Date}}$
Author:	Shelly Johnsen, 6712	5-2709 Date
Technical Reviewer:	Greg Roselle, 6712	$\frac{5/27/2007}{\text{Date}}$
QA Reviewer:	Mario J. Chavez, 6710	5/27/09 Date
Management Reviewer:	Ohristi Leigh, 6712	$\frac{5/27/09}{\text{Date}}$

TABLE OF CONTENTS

APPROVAL PAGE	2
TABLE OF CONTENTS	ţ
LIST OF FIGURES4	ŀ
LIST OF TABLES6	í
1 INTRODUCTION	7
2 DESCRIPTION OF THE LONG-TERM INUNDATED HYDRATION EXPERIMENTS 8	}
2.1 Experiment matrix	ζ
2.2 Experimental Procedures)
3 EXPERIMENTAL RESULTS	
3.1 Phase Identification Based on XRD Patterns	
3.2 SEM	,
3.3 pH	?
4 Thermodynamics	ŀ
4.1 Dissussion of phase 3 and phase 5	ŀ
4.2 Saturation index of phase 5, phase 3 and brucite	,
4.3 Relative stability of phase 5, phase 3 and brucite	2
5 REFERENCES	ţ
APPENDIX A65	;
APPENDIX B68	,

LIST OF FIGURES

Figure 1. XRDs of series ER3L	13
Figure 2. XRDs of series ER3M	14
Figure 3. XRDs of series ER20S	15
Figure 4. XRDs of series ER20M	16
Figure 5. XRDs of series GW3M	17
Figure 6. XRDs of series GW3S	18
Figure 7. XRD's of series GW20L	19
Figure 8. XRDs of series GW20M	20
Figure 9. XRDs of series MgCl20L	21
Figure 10. XRD of series MgCl3M	22
Figure 11. XRDs of series MgCl3S.	23
Figure 12. XRDs of series MgCl20M numbers	24
Figure 13. Image of Martin Marietta MgO before hydration.	26
Figure 14. SEM image of sample ER3M7	28
Figure 15. Higher magnification of Figure 14	29
Figure 16. SEM image of a piece of sample ER20S15	31
Figure 17. Same as Figure 16, at a different scale.	30
Figure 18. SEM image of sample GW3S7	32
Figure 19. SEM image showing a detailed view of region (2a) from Figure 18	33
Figure 20. EDS spectra of area shown in Figure 19.	34
Figure 21. Interior of Martin Marietta MgO particle shown in Figure 18.	35

Information Only

Figure 22.	Detailed view of Figure 21.	36
Figure 23.	Detailed view of the interior of a partially hydrated Martin Marietta MgO particle	37
Figure 24.	SEM image of sample MgCl23M11	38
Figure 25.	SEM image of sample MgCl23M11	39
Figure 26.	SEM image of a particle from sample GW20L11	40
Figure 27.	Back-scattered electron (BEC) image of the exterior of a particle from GW20L11	41
Figure 28.	Saturation index for MgO hydrated in GWB brine.	49
Figure 29.	Saturation index for MgO hydrated in simplified GWB brine	51
Figure 30.	Phase diagrams for phase-5, phase-3 and brucite	54
Figure 31.	MgO hydrated in GWB.	57
Figure 32	MgO hydrated in simplified GWB.	59
Figure 33	MgO hydrated in FRDA-6.	61

LIST OF TABLES

Table 1. Lo	ng-term inundate	d hydration ex	periment	t matrix
-------------	------------------	----------------	----------	----------

1 INTRODUCTION

Magnesium oxide (MgO) is being emplaced in the WIPP as an engineered barrier to sequester carbon dioxide (CO₂) that could potentially be generated by microbial consumption of the cellulose, plastic and rubber in the repository. MgO also consumes water in brine or water vapor in the gas phase to form brucite, $Mg(OH)_2$. The brucite dissolution reaction will buffer pH to a slightly alkaline pH (U.S. DOE, 2004), which directly affects actinide speciation and solubility. The strong reducing conditions created by anoxic iron corrosion, low f_{CO_2} and the mildly basic brine will result in low actinide (An) solubility.

A series of experiments have been conducted at SNL to verify the efficacy of MgO from Martin Marietta Magnesia Specialties LLC (Martin Marietta) under test plan TP 06-03. There are three tasks in TP 06-03: MgO characterization, MgO hydration, and MgO carbonation. MgO characterization, accelerated MgO hydration under inundated conditions were completed and reported in the last milestone report (Deng et al., 2008). Currently three experiments are being carried out: humid hydration, long-term inundated hydration, and MgO carbonation. Only the long-term inundated hydration data will be discussed in this report. The other two sets of experiments will be reported at a later time when more data is collected.

Particle size, solid-to-liquid ratio, and stir speed may all influence MgO hydration kinetics. Accelerated-MgO-hydration experiments were carried out with two MgO particle sizes, three solid-to-liquid ratios and two stir speeds in de-ionized (DI) water at 70 °C (Deng et al., 2008). We found that the MgO particle size is the most important factor affecting the hydration rate while the solid-to-liquid ratio, and stir speed do not have a significant effect on the hydration rate. Based on these results, we designed a long-term-MgO-hydration experimental matrix where the effect of the MgO particle size would be carefully tested. The fractional-factorial (Box et al., 1978) experimental matrix was designed to test the hydration rate with three MgO particle sizes and two solid-to-liquid ratios in three WIPP-related brines. EQ3/6 was used to simulate the reaction path way of MgO hydration and carbonation in a closed system containing brine and atmospheric carbon dioxide by titrating periclase into the system. This activity is covered by analysis plan AP-108 (Nowak, 2003). This work is a deviation from that analysis plan where no EQ3/6 or FMT runs were originally planned. Experimentally measured pH, Mg²⁺, and Cl⁻ concentration, and the phase assemblage of hydration products are compared with the modeling predictions.

2 DESCRIPTION OF THE LONG-TERM INUNDATED HYDRATION EXPERIMENTS

2.1 Experiment matrix

A fractional-factorial (Box et al., 1978) experimental matrix was designed to test the hydration rate with three MgO particle sizes and two solid-to-liquid ratios in three WIPP-related brines. MgO sieved into three particle sizes was tested in this experiment. The as-received MgO (referred to as mix in the report), and two MgO particle sizes with the highest weight fractions were used. The larger particle-size MgO had particles with diameters between 1.0 - 2.0 mm (mesh 10 and 18), which accounted for 32 wt % of the as-received MM MgO. The smaller particle-size MgO had particles with diameters less than 75 μ m (mesh 200), which accounted for 18 wt % of the as-received MM MgO (see Section 3 of Deng et al., 2008).

Two WIPP-relevant MgO-to-brine ratios, 3 g/11 ml and 3.1 g/77 ml, were used in the long-term inundated-hydration experiments. Nemer (2006) has shown that a range of 0.001 g MgO/ml to 10 g MgO/ml brackets the expected range of MgO-to-brine ratios in WIPP. As shown in Nemer (2006), a more practical solid-to-liquid ratio is found by dividing the amount of MgO assumed to be emplaced in each panel by the minimum brine volume needed for a direct brine release (Stein, 2004). This solid-to-brine ratio is 4 g MgO/ml. However, we observed that 0.4 g MgO/ml of water was barely enough to cover the solids in the accelerated-inundated hydration experiment. Therefore we used a 3 g/11 ml ratio in the long-term hydration experiment. The 3.1 g MgO/77 ml brine MgO-to-brine ratio is comparable to the 5g MgO/100ml water MgO-to-water ratio used in our accelerated-inundated hydration experiments, which enables us to compare results.

Three brines were used in the experiment: GWB, ERDA-6 and simplified GWB. The brine GWB is a brine that approximates the brine in the Salado formation. The brine ERDA-6 is a brine that approximates the brine in the Castile formation. Simplified GWB is a brine that contains the major cations of GWB. SP 20-4 contains recipes and references for the three brines.

Table 1 describes the experimental matrix. The sample name reflects the brine, the MgO-to-brine ratio and MgO particle size used in the experiment. GW, ER, and MgCl represent the three brines: GWB, ERDA-6, and simplified GWB. Next the number 3 or 20 represents MgO-to-brine-ratio 3 g/11 ml or 3.1 g/77 ml. Last, the letters S, M, and L represent the MgO particle size: small (S), mixed (M, as received Martin Marietta MgO) or large (L). For example, GW3S means GWB brine, 3 g MgO/11 ml brine, small MgO particles. A serial number is also given to each sample to make the sample identification unique, such as GW3S1.

Table 1. Long-term inundated hydration experiment matrix

Experiment	ID	Brine	Particle Size ²	MgO(g)/Brine (ml) Ratio (g/ml) ³
1	GW3S	GWB	small	3/11
2	ER20S	ERDA-6	small	3.1/77
3	MgCl3S	Simplfied ¹ GWB	small	3/11
4	GW20M	GWB	mix	3.1/77
5	ER3M	ERDA-6	mix	3/11
6	MgCl20M	Simplified GWB	mix	3.1/77
7	GW20L	GWB	large	3.1/77
8	ER3L	ERDA-6	large	3.1/77
9	MgCL20L	Simplified GWB	large	3.1/77
10	GW3M	GWB	mix	3/11
11	ER20M	ERDA-6	mix	3.1/77
12	MgCl3M	Simplified GWB	mix	3/11

^{1.} Simplified GWB is a 1 M MgCl₂ + 3.6 M NaCl solution.

^{2.} Particle size "large" represents MgO with diameters between 1.0 - 2.0 mm. Particle size "small" represents MgO with diameters less than 75μm. Particle size "mix" represents as received MgO, never sieved.

^{3.} Samples with MgO/brine ratio 3/11 contained $3 \pm 0.05g$ of MM MgO and $11 \pm 1ml$ of brine. Samples with MgO/brine ratio 3.1/77 contained $3.1 \pm 0.05g$ of MM MgO and $77 \pm 2ml$ of brine.

2.2 Experimental Procedures

Martin Marietta MagChem 10 WTS MgO (MM MgO), which is currently being emplaced in WIPP, has been used throughout the experiment. Wheaton HDPE serum bottles (125 ml) or Nalgene HDPE centrifuge tubes (30 ml) containing brine and MM MgO were placed in a 28 °C incubator for the duration of the experiment. In order to accurately measure the MgO hydration rate, we performed loss-on-ignition (LOI) and carbon-coulometry tests on as-received MM MgO to determine if any MgO had been hydrated or carbonated before the hydration experiments were begun. The average brucite mole % in as-received MM MgO was found to be $0.19\% \pm 0.047\%$. The carbon wt % of MgO was tested by a UIC Inc CO₂ coulometer model CM504 with furnace apparatus model CM5120. The average carbon wt % was found to be $0.006\% \pm 0.002\%$ which is at the detection limit of the instrument (see Section 3 of Deng et al., 2008).

The long-term inundated-hydration samples were collected at various times depending on the rate of hydration. After a sample is taken out of the incubator, the total weight (sample + container) and pH of each sample are quickly measured. The total weight of the sample is measured by a Mettler Toledo balance. The experiment started in February of 2007. Thus far, each sample has lost about 0.2-0.3 g over the 16 month period. A weight loss of 0.2-0.3 g is about 0.1% of the initial total weight for samples with MgO/brine ratio 3/11 or 0.01% for the samples with MgO/brine ratio 3.1/77. This indicates that our sample containers were well sealed against moisture loss. The solid portion of each sample was vacuum filtered using Whatman No. 40 filter paper, and rinsed with DI water to remove any remaining brine. The filtered solids were then dried at room temperature, at least over night. Samples were then ground and characterized by powder X-ray diffraction (XRD, see Subsection 3.1), and scanning electron microscopy (SEM) as described in Subsection 3.2.

A portion of the liquid from the sample bottles was analyzed by using an inductively coupled plasma atomic emission spectrometer (ICP-AES, Perkin Elmer DV 3300) to determine the concentration of dissolved Mg, and Ca. An Orion EA 940 pH/ion analyzer and Ross electrode were used to measure pH. The pH meter was calibrated by three pH buffers bracketing the sample pH range prior to measurement. Hydrogen-ion concentrations based on the pH reading and Gran titrations of the brines are reported in Subsection 4.4.

In order to gain more information on Mg-Cl-OH-hydrate formation, Cl⁻ concentration was monitored using an Orion EA 940 pH/ion analyzer using a Cl⁻ ion selective electrode (Orion model 96/7B). Chloride concentration was also measured using a Dionex 3000 ion chromatograph (IC) with AS23 4mm column and Ag23 4mm guard column. We found that Cl⁻ concentrations measured by a chloride electrode were not accurate for complex brines such as GWB or ERDA-6, thus only the IC measured Cl⁻ concentrations are used in the report.

3 EXPERIMENTAL RESULTS

3.1 Phase Identification Based on XRD Patterns

Phase identification of the crystalline phases present in the hydration product was performed using a D8 Advance Bruker X-ray diffractometer (XRD). All XRD patterns were collected using Cu K α radiation at a scanning rate of 1.33%min for a 2 θ range of 10-90%. The detection limit for XRD is on the order of a few weight percent. XRD patterns for the long-term inundated hydration product are displayed in Figure 1 through Figure 12. Two detectors, Kevex and Sol-X have been used to collect the XRD patterns. Thus there are differences in the absolute peak intensities. Therefore the counts in the XRD patterns displayed in Figure 1 through Figure 12 should be considered qualitative. In this report XRD is only used to identify the mineral phases present in the samples and not to quantify the amount of each phase. In future work, the collected samples will be re-scanned using a single detector and the Rietveld method will be applied to quantify the wt% of mineral phases.

The hydration products include brucite and phase-5. MgO hydrated in simplified GWB or GWB produces phase-5 and brucite, while MgO hydrated in ERDA-6 produces brucite. Some halite (NaCl) is also observed in the XRD. Given that MgO hydration consumes water and all three brines have high concentrations of NaCl, it is reasonable to assume that halite precipitated out of solution.

Figure 1 through Figure 4 show that brucite was formed by MgO hydration in ERDA-6 brine. There is also a small un-identified peak around 2θ of 12°. Looking at Figure 1 – Figure 2, one can see that brucite formed at 113 days in the hydration reaction with large MgO particles with MgO-to-brine ratio equal to 3/11, while brucite formed in only 24 days for as-received MgO with the same MgO-to-brine ratio. Figure 3 shows that brucite formed at 24 days in the hydration samples with small MgO particles and MgO-to-brine ratio equal to 3.1/77, while Figure 4 shows that brucite formed at 113 days in as-received MgO with the same MgO-to-brine ratio.

Figure 5 - Figure 6 show that phase-5 and brucite were formed in MgO samples hydrated in GWB brine with MgO-to-brine ratio equal to 3/11. Phase-5 generally formed first, then brucite formed. Phase-5 appeared in hydration products at 24 days and brucite appeared in 113 days for as-received MgO (Figure 5). Phase-5 appeared in hydration products at 24 days and brucite appeared in 41 days for small-MgO particles in experiments (Figure 6). Phase-5 and brucite co-existed at 498 days (Figure 5 - Figure 6). However, as shown in Subsection 4.2, the saturation indices for this system are still high (i.e. >1). Thus we do not yet know whether these phases co-exist at equilibrium in this system. Phase-5 appeared in the hydration product of as-received MgO with MgO-to-brine ratio equal to 3.1/77 at 371 days (see Figure 8). Neither phase-5 nor brucite is evident in large-MgO-particle samples hydrated in GWB collected at 371 days (see Figure 7). It appears that in GWB brine, the MgO/ brine ratio has a strong effect on the hydration rate.

MgO hydrated faster in simplified GWB compared to the other two brines. Figure 9 - Figure 12 indicate that phase-5 formed at 24 days in all MgO samples hydrated in simplified GWB and that brucite was formed at 24 - 41 days. Figure 9 - Figure 12 also show phase-5 and brucite co-existing at 400+ days. In this case, as shown in Subsection 4.2, the saturation indices are lower than the GWB system. It will be interesting to look at the results at much longer times to see whether phase-5 and brucite do co-exist at equilibrium.

Figure 1 through Figure 12 show that the MgO particle size has an effect on the hydration kinetics. Small MgO particles form hydration products before large particles. The same trend was observed in the accelerated-MgO-hydration experiments carried out in de-ionized (DI) water at 70 °C (Deng et al., 2008).

Figure 1. XRD of series ER3L, large MgO particles hydrated in ERDA-6 brine with MgO-to-brine ratio equal to 3 g/11 ml. Hydration products at 24, 50, 113, and 371 days are displayed in increasing vertical displacement upward in the figure. Here H indicates halite, B indicates brucite, and P indicates periclase. In the figure, brucite is first evident at 113 days.

Figure 2. XRD of series ER3M, as-received MgO hydrated in ERDA-6 brine with MgO-to-brine ratio equal to 3 g/11 ml. Hydration products obtained at 24, 50, 113, and 371 days are displayed in increasing vertical displacement in the figure. Here H indicates halite, B indicates brucite, and P indicates periclase. In the figure, brucite is first evident at 50 days.

Figure 3. XRD of series ER20S, small MgO particles hydrated in ERDA-6 with MgO-to-brine ratio equal to 3.1 g/77 ml. Hydration products obtained at 24, 41, 50, 69, 113, 198, 308, and 498 days are displayed in increasing vertical displacement upward in the figure. Here H indicates halite, B indicates brucite, and P indicates periclase. In the figure, brucite is first evident at 24 days.

Figure 4. XRD of ER20M, as-received MgO hydrated in ERDA-6 brine with MgO-to-brine ratio equal to 3.1 g/77 ml. Hydration products obtained at 24, 50, 113, 198, 308, and 498 days are displayed in increasing vertical displacement upward in the figure. Here H indicates halite, B indicates brucite, and P indicates periclase. In the figure, brucite is first evident at 113 days.

Figure 5. XRD of series GW3M, as received MgO hydrated in GWB brine with MgO-to-brine ratio equal to 3 g/11 ml. Hydration products obtained at 24, 50, 113, 198, and 498 days are displayed in increasing vertical displacement upward in the figure. Here P5 indicates phase-5, H indicates halite, B indicates brucite, and P indicates periclase. In the figure, phase-5 is first evident at 24 days and brucite is first evident at 113 days. At the latest collection date, 498 days, brucite and phase-5 are still co-existent.

Figure 6. XRD of series GW3S, small MgO particles hydrated in GWB with MgO-to-brine ratio equal to 3 g/11 ml. Hydration products obtained at 24, 41, 50, 69, 113, 198, 308, and 498 days are displayed in increasing vertical displacement upward in the figure. Here P5 indicates phase-5, H indicates halite, B indicates brucite, and P indicates periclase. In the figure, phase-5 is first evident at 24 days, brucite is first evident at 41 days. At the latest collection date, 498 days, brucite and phase-5 are still co-existent.

Figure 7. XRD of series GW20L, large MgO particles hydrated in GWB brine with MgO-to-brine ratio equal to 3.1 g/77 ml. Hydration products obtained at 24, 50, 113, 198, and 371 days are displayed in increasing vertical displacement upward in the figure respectively. Here H indicates halite, and P indicates periclase. Neither phase-5 nor brucite is observed.

Figure 8. XRD of series GW20M, as received MgO hydrated in GWB brine with MgO-to-brine ratio equal to 3.1 g/77 ml. Hydration products obtained at 24, 50, 113, 198, and 371 days are displayed in increasing vertical displacement upward in the figure. Here P5 indicates phase-5, H indicates halite, B indicates brucite, and P indicates periclase. In the figure, phase-5 is evident at 371 days.

Figure 9. XRD of series MgCl20L, large MgO particles hydrated in simplified GWB brine with MgO-to-brine ratio equal to 3.1 g/77 ml. Hydration products obtained at 24, 41, 50, 113, 160, 198, 308, 436 and 498 days are displayed in increasing vertical displacement upward in the figure. Here P5 indicates phase-5, H indicates halite, B indicates brucite, and P indicates periclase. In the figure, phase-5 is first evident at 24 days and brucite is first evident at 41 days. At the latest collection, 498 days, brucite and phase-5 are still co-existent, and periclase is slightly visible.

Figure 10. XRD of series MgCl3M3, as-received MgO hydrated in simplified GWB with MgO-to-brine ratio equals to 3 g/11 ml. Hydration products obtained at 24, 41, 50, 113, 160, 198, 308, 436, and 498 days are displayed in increasing vertical displacement upward in the figure. Here P5 indicates phase-5, H indicates halite, B indicates brucite, and P indicates periclase. In the figure, phase-5 is first evident at 24 days and brucite is first evident at 41 days. At the latest collection date, 498 days, brucite and phase-5 are still co-existent, and periclase is slightly visible.

Figure 11. XRD of series MgCl3S, small MgO particles hydrated in simplified GWB with MgO-to-brine ratio equal to 3 g/11 ml. Hydration products obtained at 24, 41, 50, 113, 160, 198, 308, 436 and 498 days are displayed in increasing vertical displacement upward in the figure respectively. Here P5 indicates phase-5, H indicates halite, B indicates brucite, and P indicates periclase. In the figure, phase-5 and brucite are first evident at 24 days. At the latest collection date, 498 days brucite and phase-5 are still co-existent, and periclase is slightly visible.

Figure 12. XRD of series MgCl20M, as received MgO hydrated in simplified GWB with MgO-to-brine ratio equal to 3.1 g/77 ml. Hydration products obtained at 24, 41, 50, 113, 160, 198, 308, and 436 days are displayed in increasing vertical displacement upward in the figure respectively. Here P5 indicates phase-5, H indicates halite, B indicates brucite, and P indicates periclase. In the figure, phase-5 is first evident at 24 days and brucite is first evident at 41 days. At the latest collection date, 436 days, brucite and phase-5 are still co-existent, and periclase is slightly visible.

3.2 **SEM**

To gain some understanding of the phases that are present in the MgO hydration product, SEM images were obtained using a JEOL JSM-5900LV with Energy Dispersive Spectroscopy (EDS). Samples were mounted on graphite tape and imaged.

Figure 13 and Figure 13A show SEM images of as-received MM MgO. The material is composed of large (10 µm) particles with smaller particles filling in the interstitial spaces.

Figure 14 - Figure 15 show SEM images of as received MgO particles that had been hydrated in ERDA-6 brine for 113 days. Figure 15 shows that a hydration product has been formed on the exterior of the particles. The XRD of as-received MgO hydrated in ERDA-6 (Figure 2) indicates that the hydration product is likely brucite.

Figure 16 - Figure 17 show SEM images of small MgO particles (i.e. particles initially < 75 μ m) that have been hydrated in ERDA-6 for 308 days. The XRD of small MgO particles hydrated in ERDA-6 (Figure 3) indicates the sail-like crystals are most likely brucite.

Figure 18 shows an SEM image of a MgO particle that has been hydrated in GWB brine for 50 days. Regions (1) and (2a) show a fine carpet of needle like fibers that cover the external surface of the particle. A detailed view of these fibers is given in Figure 19. Evidence suggests that these needles are phase-5 (Mg₃(OH)₅Cl·4H₂O), based on their morphology (which matches that of the literature, see Tooper and Cartz 1966), EDS spectra (Figure 20), and the powder XRD on this sample (Figure 6).

Figure 21 shows another region in the interior of the particle shown in Figure 18. A large un-reacted periclase particle is nested in a mass of smaller periclase particles and hydration products. Needles are also visible in the interior of the particle which is blown up in Figure 22. Figure 23 shows a detailed view of the granular fabric inside the particle. The figure shows that hydration has occurred throughout the particle, as the interstitial spaces have been filled with hydration products.

Figure 24 -Figure 25 show as-received MM MgO hydrated in simplified GWB for 113 days. Needles that are similar to that seen in GWB are visable but the needles in simplified GWB appear more coarse.

Figure 26 - Figure 27 show images of GW20L (GWB brine, 3.1 g/77 ml solid-to-liquid ratio, large particles) after hydration for 371 days. Upon looking at SEM images, one can see a thin (10 μ m) coating of hydration product on the exterior of the particles. Figure 27 shows a network of fractures in the hydration product through which water can permeate. Thus we tentatively conclude that hydration is occurring in this set of experiments, albeit at a slower rate. The detection limit of XRD is on the order of a few weight percent, which may explain why no hydration product is observed in the XRD of the GW20L series (Figure 7).

Information Only

Figure 13. SEM image of as-received-MgO particles before hydration. This image is recorded as 816H4I4A.TIF in SN WIPP-MM MgO-2.

Figure 13A. SEM image of as-received-MgO particles before hydration (not same sample as Figure 13). Notice the change that occurs in the interstitial spaces during hydration between this image and Figure 23. This image is recorded as I1.BMP in SN WIPP-MM MgO-15, pg. 30.

Figure 14. SEM image of a sample of series ER3M, as-received MgO hydrated in ERDA-6 brine with MgO-to-brine ratio equal to 3 g/11 ml for 113 days. This image is recorded as image H2I2C.bmp in SN WIPP-MM Mg0-8, pg. 17.

Figure 15. Higher magnification of Figure 14. The large particles are periclase with hydration product that is likely brucite growing on the exterior. The clean particle in the center of the image is halite. This image is recorded as H2I2B.bmp in notebook WIPP-MM MgO-8, pg. 17.

Figure 16. SEM image of a sample of series ER20S, small-MgO particles hydrated in ERDA-6 with MgO-to-brine ratio equal to 3.1 g/77 ml for 308 days. This image is recorded as I4.bmp in notebook WIPP-MM MgO-15, pg. 31.

Figure 17. Same as Figure 16, at a different scale and at a slightly different location within the same particle. This image is recorded as I1A.bmp in notebook WIPP-MM MgO-15, pg. 31.

Figure 18. SEM image of a sample of series GW3S, small MgO particles hydrated in GWB brine with MgO-to-brine ratio equal to 3 g/11 ml for 50 days. Here the particle has been sliced open where region (1) is the external surface of the particle and (2a), (2b) are in the plane of the slice. This image is recorded as H1I4.BMP in SN WIPP-MM MgO-7, pg. 16.

Figure 19. SEM image showing the detailed view of region (2a) from Figure 18. As explained in the text, the EDS spectra shown in Figure 20 indicates that the needle like fibers are likely phase-5. This image is recorded as H1I4B.BMP in SN WIPP-MM MgO-7, pg. 16.

Figure 20. EDS spectra of area shown in Figure 19. This spectrum is recorded as H1I4S1B.EDS in SN WIPP-MM MgO-7, pg. 16.

Figure 21. Interior of MgO particle shown in Figure 18. In the center of this image is a piece of partially reacted periclase surrounded by smaller pieces of partially reacted periclase and hydration products. A detailed view of region (1) is shown in Figure 22. A detailed view of the interior fabric is shown in Figure 23. This image is recorded as H1I1.BMP in SN WIPP-MM MgO-7, pg. 16.

Figure 22. Detailed view of region (1) in Figure 21. These needles strongly resemble the outer carpet shown in Figure 18 and Figure 19. This image is recorded as H1I2.BMP in SN WIPP-MM MgO-7, pg. 16.

Figure 23. Detailed view of the interior of a partially hydrated MgO particle. The more rounded particles are periclase and the interstitial spaces have been filled with hydration products. See Figure 13 to examine as-received MgO particles before hydration. This image is recorded as H1I3.BMP in SN WIPP-MM MgO-7, pg. 16.

Figure 24. SEM image of a sample of series MgCl3M, as-received MgO particle after hydration in simplified GWB brine with MgO-to-brine ratio equal to 3 g/11 ml for 113 days. This image is recorded as H1I1.BMP in SN in WIPP-MM MgO-7, pg. 57.

Figure 25. SEM image of a sample of series MgCl3M, as-received MgO particle after hydration in simplified GWB brine with MgO-to-brine ratio equal to 3 g/11 ml for 113 days. This image is recorded as H1I2.BMP in SN WIPP-MM MgO-7, pg. 57.

Figure 26. SEM image of a particle from series GW20L, large-MgO particles hydrated in GWB, with MgO-to-brine ratio equal to 3.1 g/77 ml, for 371 days. This image shows a particle that has been cut open using an exacto knife. Region 1 is on the exterior of the particle, region 2 is in the interior of the particle. A skin of hydration product (above the dotted lines) is visible of thickness around 10 μ m. This image is recorded as H1I4B.BMP in SN WIPP-MM MgO-15, pg. 30.

Figure 27. Back-scattered electron (BEC) image of the exterior of a particle from series GW20L, large MgO particles hydrated in GWB, with MgO-to-brine ratio equal to 3.1 g/77 ml for 371 days. A network of fractures (\sim 1 μ m aperture) is visible which will allow brine to further penetrate these particles. This image is recorded as H1I3.BMP in SN WIPP-MM MgO-15, pg. 30.

3.3 pH

The three brines used in the long-term hydration experiments are brines with high ionic strengths. In this report, we attempt to obtain hydrogen ion concentrations based on the pH reading and the correction factors calculated from Gran titrations of the brines. Rai et al. (1995) investigated the relationship between the log of hydrogen-ion concentration and pH measured by combination-glass electrode using Gran titrations. They reported a correction factor A for high-ionic-strength solutions containing NaCl or Na₂SO₄ or both,

$$pC_{H}^{\dagger} = pH_{ob} + A, \tag{1}$$

where pC_H^{\dagger} is the negative log of hydrogen-ion concentration on a molarity scale and pH_{ob} is the observed pH reading of the brine using a combination-glass electrode. The constant A is then related to the activity of hydrogen by

$$A = \log \gamma_{H}^{+} + (F/2.303RT)/E_{j}, \tag{2}$$

where γ_H^+ is the molarity-scale activity coefficient of H^+ and E_j is the difference in liquid-junction potential between the low-ionic-strength standards and high-ionic-strength solutions.

Gran titrations can be performed using acid or base. Rai et al. (1995) reported that the correction factor A obtained by acid and base titration are consistent. Rai et al. (1995) also investigated the correction factor A of a limited number of Orion-Ross-glass-combination electrodes and found the value of A of different electrodes were close. Therefore, it may not be necessary to measure the correction factor A for every electrode.

Altmaier et al. (2003) determined the log of the hydrogen-ion concentration in a series of NaCl and $MgCl_2$ solutions by two methods. One method was Gran titrations using acid. The other was to measure the activity of HCl with a liquid-junction-free cell using a H⁺ sensitive electrode and a chloride-sensitive electrode. They reported the hydrogen-ion concentration obtained from both methods were consistent within \pm 0.04 log units, except for a 5.15m $MgCl_2$ solution.

We obtained the correction factor A for the three brines, GWB, ERDA-6, and simplified GWB by Gran titration using 1.00 M and 0.01 M HCl. The 1.00 M HCl was standardized against NaOH, which was first standardized by KHP (potassium hydrogen phalate). An Orion EA 940 pH/ion analyzer and two Ross electrodes were used to measure pH. The pH meter was calibrated by three pH buffers bracketing the sample pH range prior to measurement. In order to remove any dissolved carbon dioxide brine was purged by nitrogen for at least 5 minutes. Small amounts of HCl were delivered to the brine by an Eppendorf pipette. The observed pH values after each addition of HCl as well as the volume of HCl added to the brine were recorded in the scientific notebook. Since GWB and ERDA-6 contain small amounts of sulfate which can consume HCl to form bisulfate ions (HSO₄) at low pH,

$$HSO_4^- \rightleftharpoons H^+ + SO_4^{2-}, \tag{3}$$

the acid dissociation constant for reaction (3), K_a, was calculated by the FMT code (Babb and Novak, 1997). The values of Ka used and the FMT files from which they came are documented in Excel file "Brine acid base titration" on the worksheet "constant". Next the concentration of H⁺ can be calculated from

$$H^{+} = H^{+}_{add} / [1 + (1/K_a) [SO_4^{2-}]],$$
(4)

where $[SO_4^{2^-}]$ is the molar concentration of sulfate. Next, plots of the observed $[H_{ob}^{+}]$ (equal to 10^{-pH}) versus H^+ obtained by equation (4) were prepared. The correction factor A was then obtained by taking the log of the slope of these plots.

The correction factors A for ERDA-6, GWB, and simplified GWB are 1.155, 1.236, and 1.202 respectively. The detailed calculation for these correction factors is located in Excel file "Brine Acid Base Titration"; see the worksheet "sum" for a summary of these calculations. Using the obtained correction factors for GWB, simplified GWB and ERDA-6, the brine pmH ($\log m_H^+$) are shown in section 4.4.

4 THERMODYNAMICS

4.1 Discussion of phase 3 and phase 5

Sorel first reported making a cementitious material by mixing calcinated magnesia with concentrated magnesium chloride solution in 1867 (Sorel, 1867). Such material has been referred to as Sorel cement, magnesia cement, or magnesium-oxychloride cement. Magnesiumoxychloride cement (MOC) is now the generally used term. MOC has been an important building material by virtue of its high fire resistance, low thermal conductivity and marble-like appearance. Various forms of magnesium oxychloride have been identified in the system of MgO-MgCl₂-H₂O and NaOH-MgCl₂-H₂O. Designated by the number of moles of OH appearing in its formula in relation to that of Cl, they are, Mg₃(OH)₄Cl₂·2H₂O (phase-2), Mg₂(OH)₃Cl· $4H_2O$ (phase-3), $Mg_3(OH)_5Cl\cdot 4H_2O$ (phase-5), and $Mg_5(OH)_9Cl\cdot 5/2H_2O$ (phase-9). researchers give a different formula for phase-9, Mg₅(OH)₉Cl 1/2H₂O (Maravelaki-Kalaitzaki and Moraitou, 1999). Only phase-3 and phase-5 have been found to form at ambient temperatures (Demediuk et al., 1955; Newman, 1955; Matkovic et al., 1977; Mazuranic et al., 1982; Bilinski et al., 1984), and thus are of particular interest to us. Previous research on Premier-MgO hydration found the formation of brucite from MgO hydrated in ERDA-6, and formation of phase-5 and brucite in GWB brine (Xiong and Snider Lord, 2008). Brucite has also been proposed to be added to the Asse salt mine in Germany (Altmaier et al., 2003). Phase-3 and brucite formation have been observed in Asse-relevant brines. These phases may have an important effect on pH, thereby affecting actinide solubilities in brine.

A. The formation of magnesium oxychloride

The crystallization of a particular MOC phase depends on the total amount of Mg and Cl and the pH of the solution (Demediuk et al., 1955; Mazuranic et al., 1982; Bilinski et al., 1984). Demediuk et al. (1955) studied the MgO-MgCl₂-H₂O system at temperatures between 0 and 110 °C. They added 0.4 g of MgO to 20 ml of MgCl₂ solution at various concentrations between 10 and 40 w/v % (1.13 – 4.74 m). According to their results, at temperatures around 30 °C, a mixture of phase-5 and brucite formed at MgCl₂ concentrations lower than 18 % w/v (1.99 m), while phase-5 alone formed in MgCl₂ solutions of 23 % w/v (2.67 m). At MgCl₂ solution concentrations of 30 % w/v (3.49 m), phase-3 was precipitated. Mazuranic et al. (1982) studied the system of NaOH-MgCl₂-H₂O. NaOH was added to MgCl₂ solutions of 0.001- 4.8M (0.001 – 5.68 m). Phase-3 and phase-5 formed only in mixtures that had a MgCl₂ concentration greater than 1.96 M. Altmaier (2003) studied the solubility of Mg(OH)₂ in water, 0.01-2.7 m MgCl₂, 0.1-5.6 m NaCl and in mixtures of 0.5 and 5.0 m NaCl containing 0.01-0.05 m MgCl₂. It was found that the Mg(OH)₂ completely converted into phase-3 in MgCl₂ solutions above 2 molal. In MgCl₂ solutions of 2.67 m and 5.15 m, the pH decreased 0.2-0.5 units, as a result of the phase change.

B. The reaction of phase 3 and phase |5|c1| with water and carbon dioxide

On continued exposure to water, MOC hydrolyzes slowly and magnesium chloride is leached out (Maravelaki-Kalaitzaki and Moraitou, 1999). de Castellar et al. (1996) showed that a polished MOC brick cracks after five months due to the formation of oxychloride-carbonate

 $(Mg(OH)_2\cdot 2\ MgCO_3\cdot MgCl_2\cdot 6H_2O)$ produced from phase-3 carbonation. In a 22-yr-old specimen which was temporarily exposed to rain, hydromagnesite was the predominant phase on the surface with phase-5, brucite, and oxychloride-carbonate present in the interior of the specimen (Matkovic et al., 1977). Maravelaki-kalaitzaki (1999) and Demediuk (1955) also found oxychloride-carbonate in Sorel's cement containing phase-3 and phase-5. The formation of the oxychloride-carbonate is temperature and humidity-dependent and is favored at relative humidity greater than 60% (Maravelaki-Kalaitzaki and Moraitou, 1999). Further carbonation of oxychloride-carbonate generates hydromagnesite $(Mg_5(CO_3)_4(OH)_2\cdot 4H_2O)$ (Maravelaki-Kalaitzaki and Moraitou, 1999).

C Quantification of the weight fractions of phase 3 and phase 5

Powder X-ray diffraction (XRD), SEM, EDS, FT-IR and differential thermal analysis have been used by researchers to identify the presence of phase-3 and phase-5. However, quantitative analysis of phase-3 and phase-5 is difficult. Most researchers use semi-quantitative methods to determine the amount of phase-3/5 by XRD (Bilinski et al., 1984). Others use chemical analysis (Demediuk et al., 1955) to quantify the amount of MgO and chloride, using toxic chemicals such as Hg₂O. TGA and DSC are not viable methods because phase-3 loses water at 100-250 and 300-500 °C, and phase-5 loses water at 70-250, 300-500 °C. Thus both phase-5 and phase-3 decompositions overlap with the water-loss of brucite at 350-500 °C, which makes it impossible to quantitatively determine the amount of phase-3, phase-5 and brucite using TGA or DSC (Demediuk et al., 1955) . As discussed in Section 3.1, in future work we will use XRD and the Rietveld method to quantify the weight percent of mineral phases.

4.2 Saturation index of phase 5, phase 3 and brucite

In section 3.1 it was shown that MgO hydrated in ERDA-6 produces brucite, and MgO hydrated in simplified GWB or GWB produces phase-5 and brucite. Next we present the experimental saturation index (SI) of phase 5, phase 3 and brucite versus time in the three brines. SI is defined as

$$SI = \log(Q/K) \tag{5}$$

where Q is the ion activity product and K is the equilibrium constant of a given phase. When SI > 0, the solution is over-saturated with respect to the phase, i.e. the solid phase is forming. When SI < 0, the solution is under-saturated with respect to that phase. We calculated log Q for phase-5, phase-3 and brucite according to the following equations:

phase-5:

phase-3:

$$Mg_{3}Cl(OH)_{5} \cdot 4H_{2}O + 5H^{+} = 3Mg^{2+} + 9H_{2}O(1) + Cl^{-}$$

$$log Q (phase-5) = 3 log (m_{mg}^{2+} \gamma_{mg}^{-2+}) + log (m_{Cl}^{-} \gamma_{Cl}^{+}) - 5 log(m_{H}^{+} \gamma_{H}^{+}) + 9 log a_{w}$$
 (6)

$$Mg_2Cl(OH)_3 \cdot 4H_2O + 3H^+ = 2Mg^{2+} + 7H_2O(1) + Cl^-$$

$$\log Q \text{ (phase-3)} = 2 \log (m_{\text{mg}}^{2+} \gamma_{\text{mg}}^{2+}) + \log (m_{\text{Cl}} \gamma_{\text{Cl}}^{+}) - 3 \log (m_{\text{H}}^{+} \gamma_{\text{H}}^{+}) + 7 \log a_{\text{w}}$$
 (7)

brucite:

$$Mg(OH)_{2} + 2H^{+} = Mg^{2+} + 2H_{2}O(I)$$

$$log Q (brucite) = log (m_{mg}^{2+} \gamma_{mg}^{-2+}) - 2 log(m_{H}^{+} \gamma_{H}^{+}) + 2 log a_{w}$$
(8)

In equations (6) - (8), m_{mg}^{2+} , m_{Cl} and m_H^+ are the molal concentrations of Mg^{2+} , Cl and H^+ which were determined experimentally (see experimental section). Using the database "data1.ph5" the activity coefficients γ_{Mg}^{2+} , γ_{Cl} , γ_{H}^+ and the water activity a_W were obtained from EQ3/6 runs simulating the reaction path way of periclase being titrated into a closed system containing one of the three brines (ERDA-6, GWB, simplified GWB). Database "data1.ph5" has been modified from "data0.hmo" by adding the solubility constant for phase-5 (Xiong et al, 2009) calculated from the specific interaction model (SIT).

We also calculated the solubility constant of phase-5 using EQ3/6. This was accomplished by entering the experimentally measured magnesium, and chloride concentrations, setting the sodium concentration to achieve charge balance, and adjusting the log K of phase-5 until the predicted pmH matched the experimentally determined value (a manual optimization technique). While this method is self consistent with the rest of EQ3/6 calculations reported in this document, the difference between the log K (phase-5) using this method and the SIT method is only 0.2 log units, which is within experimental error (2 σ). This work was performed under AP-108. This work is a deviation from that analysis plan where no EQ3/6 or FMT runs were originally planned.

Various solubility constants for brucite and phase-3 are available in the literature. Altmaier et al. (2003) determined the log K for brucite at 22 °C from solubility experiments with brucite in 0.01 - 2.7 m MgCl₂, 0.1 - 5.6 m NaCl, and mixtures of MgCl₂ and NaCl solutions. They also obtained the log K for phase-3, by performing solubility experiments in 2.11-5.15 m MgCl₂ solutions. Both values, log $K_{brucite} = 17.1$ and log $K_{phase-3} = 26.0$ are slightly different from the value used in our calculation, when they are extrapolated to the reference temperature 25 °C. Xiong (2008) recommended a solubility constant value for brucite based on experiments from supersaturation and undersaturation, log $K_{brucite} = 17.05$ at 25 °C. The solubility constants for brucite and phase-3 used in this report are taken from the EQ3/6 database "data0.hmo", log $K_{brucite} = 17.1090$, log $K_{phase-3} = 26.0297$. The solubility constant for phase-5 used in this report, log $K_{phase-5} = 43.17$, is taken from Xiong et al. (2009).

Figure 28 - Figure 29 show the SI for phase-5, phase-3 and brucite from hydration experiments conducted in GWB and simplified GWB. In general, the SI for all three phases are over-saturated or near equilibrium in GWB and simplified GWB. However, we did not observe phase-3 in any of the XRD files. The stability diagrams of the three phases presented in the next section may explain why phase-5 formed instead of phase-3. Detailed calculations for the

saturation index presented in Figure 28 - Figure 29 can be found in Excel file "Plots" worksheet "Fig 28' and "Fig 29".

Figure 28 (A-D). Saturation index (SI) of brucite, phase-5, and phase-3 for MgO hydrated in GWB brine. See Table 1 for description of each experimental GW series.

Figure 29 (A-D). Saturation index of brucite, phase-5, and phase-3 for MgO hydrated in simplified GWB brine. See Table 1 for description of each experimental simplified GWB series.

4.3 Relative stability of phase 5, phase 3 and brucite

The saturation indices given in section 4.2 indicate that phase-5, phase-3 and brucite are near or over-saturated in GWB and simplified GWB. However, as shown by XRD in section 3.1, MgO hydrated in ERDA-6 produces brucite, and MgO hydrated in simplified GWB or GWB produces phase-5 in addition to brucite. This can be understood by plotting the experimental data on phase diagrams for phase-5, phase-3 and brucite. Figure 30 shows the pmH of phase-5, phase-3, and brucite versus m_{Mg}^{2+} calculated using EQ3/6 (Xiong et al, 2009) and the experimental data points from the three brines. Figure 30 can be interpreted as a stability-field diagram for the three phases.

As shown in Figure 30, for a given molality of Mg²⁺, phase-5 is a stable phase at higher pmH, and phase-3 is a stable phase at lower pmH. Brucite is the stable phase in a solution with a low Mg²⁺ concentration and high pmH. In solutions typical of GWB, the separation between the stability field of phase-5 and that of phase-3 is narrow for low Mg²⁺ concentrations (e.g., 0.5 m of Mg²⁺), but the separation widens as the Mg²⁺ concentration increases. Therefore, the stability fields of phase-5 and phase-3 could be considered to be overlapping in the range of low Mg²⁺ concentration when the uncertainty in the thermodynamic data is taken into account. However, in the range of high Mg²⁺ concentrations, these two phases have their respective well-defined fields. Our experimental data (>80%) are overwhelmingly in the stability field of phase-5 (Figures 30A-B), which is in excellent agreement with our laboratory observations (see Section 3.1).

In solutions typical of ERDA-6, which have Mg²⁺ concentrations lower than 0.2 m, the separation among the stability fields of brucite, phase-5, and phase-3 is small (Figure 30C). Therefore, brucite is the stable phase because of its lower solubility. The majority of our experimental data falls into the stability field of brucite, which is in agreement with our laboratory observations that only brucite is formed in experiments with ERDA-6.

Figure 30 (A-C). Phase diagrams for phase-5, phase-3 and brucite in various brines. Plots (A) and (B) have NaCl and MgCl₂ concentrations characteristic of GWB and simplified GWB. Plot (C) has NaCl and MgCl₂ concentrations characteristic of ERDA-6. All lines were calculated using EQ3/6 (Xiong et al, 2009). The symbols represent experimental data points.

4.4 Brine Chemistry

We used EQ3/6 to simulate the reaction path way of MgO hydration and carbonation in a closed system containing brine and atmospheric carbon dioxide by titrating periclase into the system. The amount of periclase titrated into GWB and ERDA-6 brine was calculated from the brine density (the brine recipe is given in SP 20-4) and the experimental brine-to-MgO ratios. The amount of periclase titrated into simplified GWB was similarly calculated, except the density of simplified GWB was measured (documented in scientific notebook WIPP-CBD-26, p82). In the simulations of MgO hydrated in ERDA-6, we also added portlandite to generate pH values and Ca concentrations similar to the experimentally observed values. In the model, portlandite was added before periclase was added, as lime hydrates much faster than periclase. The amount of portlandite added was calculated based on the mole ratio of periclase to lime reported by Deng et al. (2008). We did not add portlandite into GWB or simplified GWB because the high concentration of Mg in these brines will buffer pH. In addition, we suppressed the formation of phase-3 in our model as phase-3 was never observed in the hydration products. Detailed calculations of the amount of periclase and lime used in the EQ3/6 simulations can be found in the Excel file "MgO in brine".

The EQ3/6 model predicted the formation of brucite in ERDA-6 brine, and the formation of brucite and phase-5 in GWB and simplified GWB with MgO-to-brine ratio equal to 3 g/11 ml, which is consistent with our experiments. The EQ3/6 model also predicted the formation of phase-5 in GWB with a MgO-to-brine ratio equal to 3.1 g/77 ml, which is consistent with our experiments. The model did not predict brucite formation in simplified GWB with MgO-to-brine ratio equal to 3.1 g/77 ml, which is not consistent with our experiments. According to the model, when periclase is titrated into the GWB or simplified GWB, phase-5 forms as the Mg/Cl concentrations decrease and pH increases until certain points, where brucite starts to precipitate out with phase-5. From the EQ3/6 runs, brucite is predicted to form in simplified GWB when the Mg concentration < 0.70 m, Cl concentration <5.98 m and pmH \geq 9.25. In GWB, brucite is predicted to form when the Mg concentration < 0.78 m, Cl concentration <6.08 m, and pmH \geq 9.26. The EQ3/6 run execution information can be found in appendix A. A summary of results from the EQ3/6 runs is available in Excel file "Plots" worksheet "Fig 31' "Fig 32", and "Fig 33", in addition to the original EQ3/6 input / output files.

Figure 31 - Figure 33 compare the measured Mg concentration, Cl concentration, pmH with EQ6 predicated values. In these figures, EQ6-77 and EQ6-11 represent reaction pathway of MgO hydrated in 77 ml and 11ml brine with arbitrary time scaling.

Figure 31. Plots showing experimental concentrations of (A) Mg²⁺, (B) Cl⁻, and (C) pmH versus time (days) for MM MgO hydrated in GWB, and the results of the EQ3/6 modeling runs titrating periclase into GWB brine. The experimental conditions corresponding to each GW series can be found in Table 1. The series EQ6-77 and EQ6-11 represent the EQ3/6 modeling runs of MgO hydrated in 77 ml and 11ml brine with arbitrary time scaling.

Figure 32. Plots showing experimental concentrations of (A) Mg²⁺, (B) Cl⁻, and (C) pmH versus time (days) for MM MgO hydrated in simplified GWB, and the results of the EQ3/6 modeling runs titrating periclase into simplified GWB brine. The experimental conditions corresponding to each MgCl series can be found in Table 1. The series EQ6-77 and EQ6-11 represent the EQ3/6 modeling runs of MgO hydrated in 77 ml and 11ml brine with arbitrary time scaling.

Figure 33. Plots showing experimental concentrations of (A) Mg²⁺, (B) Cl⁻, (C) pmH, and (D) Ca²⁺⁺ versus time (days) for MM MgO hydrated in ERDA-6, and the results of the EQ3/6 modeling runs titrating periclase into simplified GWB brine. The experimental conditions corresponding to each ER series can be found in Table 1. The series EQ6-77 and EQ6-11 represent the EQ3/6 modeling runs of MgO hydrated in 77 ml and 11ml brine with arbitrary time scaling.

5 CONCLUSIONS

MgO hydration experiments were carried out with three MgO particle sizes and two solid-to-liquid ratios in three WIPP-related brines: ERDA-6, GWB and simplified GWB. The hydration products include brucite and phase-5. In addition to phase-5, MgO hydrated in simplified GWB or GWB produces brucite, while MgO hydrated in ERDA-6 only produces brucite. The MgO particle size seemed to have a significant effect on the formation of hydration products. Small MgO particles form hydration product before the large particles. MgO hydrated faster in simplified GWB compared to the other two brines.

An important, new finding in this study is the observation of formation of phase-5 in simplified GWB (ionic strength 7.9 m). This further supports the conclusion of Xiong and Lord (2008) that phase-5 is the stable phase in Mg-Na-Cl-dominated brine with an ionic strength up to 8.3 m similar to WIPP GWB. In contrast, phase-3 is the stable phase in the MgCl₂ saturated Q-brine with an ionic strength up to 15 m in the Asse repository.

We used EQ3/6 to simulate the reaction path way of MgO hydration and carbonation in a closed system containing brine and atmospheric carbon dioxide by titrating periclase into the system. Experimental values of pH, Mg⁺ concentration, Cl⁻ concentration, and hydration products were similar to the modeling predictions.

6 REFERENCES

- Altmaier, M., V. Metz, V. Neck, R. Muller and T. Fanghanel. 2003. "Solid-liquid equilibria of Mg(OH)₂(cr) and Mg₂(OH)₃Cl 4H₂O(cr) in the system Mg-Na-H-Cl-H₂O at 25 C," *Geochimica et Cosmochimica Acta*. Vol. 67, 3595-3601.
- Babb, S. C. and C. F. Novak. 1997. "User's Manual for FMT Version 2.3: A Computer Code Employing the Pitzer Activity Coefficient Formalism for Calculating Thermodynamic Equilibrium in Geochemical Systems to High Electrolyte Concentrations." Albuquerque, NM: Sandia National Laboratories. ERMS 243037.
- Bilinski, H., B. Matkovic, C. Mazuranic and T. B. Zunic. 1984. "The Formation of Magnesium Oxychloride Phases in MgO-MgCl₂-H₂O and NaOH-MgCl₂-H₂O," *Journal of The American Ceramic Society*. Vol. 67, 266-269.
- Box, G. E. P., W. G. Hunter and J. S. Hunter. 1978. Statistics For Experimenters; An Introduction to Design, Data Analysis, and Model Building. New York: John Wiley & Sons.
- de Castellar, M. D., J. C. Lorente, A. Traveria and J. M. Tura. 1996. "Cracks in Sorel's Cement Polishing Bricks as a Result of Magnesium Oxychloride Carbonation," *Cement and Concrete Research*. Vol. 26, 1199-1202.
- Demediuk, T., W. F. Cole and H. V. Hueber. 1955. "Studies on Magnesium and Calcium Oxychlorides," *Australian Journal of Chemistry*. Vol. 8, 215-232.
- Deng, H., Y.-L. Xiong, M. Nemer and S. Johnsen. 2008. "Experimental Work Conducted on MgO Characterization and Hydration." Carlsbad, NM: Sandia National Laboratories. ERMS 546570.
- Maravelaki-Kalaitzaki, P. and G. Moraitou. 1999. "Sorel's Cement Mortarts Decay Susceptibility and effect on Pentelic Marble," *Cement and Concrete Research*. Vol. 29, 1929-1935.
- Matkovic, B., S. Popovic, V. Rogic and T. Zunic. 1977. "Reaction Products in Magnesium Oxychloride Cement Pastes. System MgO-MgCl₂-H₂O," *Journal of The American Ceramic Society*. Vol. 60, 504-507.
- Mazuranic, C., H. Bilinski and B. Matkovic. 1982. "Reaction Products in the System MgCl₂-NaOH-H₂O," *Journal of The American Ceramic Society*. Vol. 65, 523-526.
- Nemer, M. B. 2006. "Expected Brine Volumes, Cumulative Brine Inflow, and MgO-to-Brine Solid-to-Liquid Ratio from PABC BRAGFLO Results." Memo to the Records Center, March 3, 2006. Carlsbad, NM: Sandia National Laboratories. ERMS 542612.

- Newman, E. S. 1955. "A Study of the System Magnesium Oxide-Magnesium Chloride-Water and the Heat of Formation of Magnesium Oxychloride," *Journal of the National Bureau of Standards*. Vol. 54, 347-355.
- Nowak, E. J. 2003. "Analysis of MgO Hydration and Carbonation Test Results, Analysis Plan AP-108, Rev. 0." Carlsbad, NM: Sandia National Laboratories. ERMS 530554.
- Rai, D., A. R. Felmy, S. P. Juracich and F. Rao. 1995. "Estimating the Hydrogen Ion Concentration in Concentrated NaCl and Na2SO4 Electrolytes." Albuquerque, NM: Sandia National Laboratories. SAND94-1949.
- Sorel, S. 1867. Comptes Rendue. Vol. 65, 102.
- Stein, J. S. 2004. "Analysis Package for Direct Brine Releases: Compliance Recertification Application Rev. 1." Analysis Package. Carlsbad, NM: Sandia National Laboratories. ERMS 532344.
- U.S. DOE. 2004. *Title 40 CFR Part 191 Compliance Recertification Application for the Waste Isolation Pilot*. Sec. Appendix BARRIERS.DOE/WIPP 2004-3231. Carlsbad, NM: U.S. Department of Energy Carlsbad Area Office.
- Xiong, Y. and A. Snider Lord. 2008. "Experimental Investigations of the Reaction Path in the MgO-CO₂-H₂O System in Solutions with Various Ionic Strengths, and their Applications to Nuclear Waste Isolation," *Applied Geochemistry*. Vol. 23, 1634-1659.
- Xiong, Y., H. Deng, M. Nemer and S. Jonhsen. 2009 "Thermodynamic Data for Phase 5 (Mg₃(OH)₅Cl·4H₂O) Determination from Solubility Experiments" Memo. Carlsbad, NM: Sandia National Laboratories. ERMS xxxxx.

APPENDIX A

This appendix outlines the EQ3/6 calculations performed. Appendices A1-A6 describe the calculations. Appendix A7 gives the file names and file dependencies.

Appendix A1 EQ3/6 simulation of 3.0g MgO tritrated into 11 ml of ERDA-6

The purpose of the simulation is to titrate 3.0 g of MgO into a closed system containing 11 ml of ERDA-6 brine.

Step1. Make EQ3 input file for brine equilibrated with atmospheric concentration of carbon dioxide, using brine recipe of ERDA-6 from appendix B of SP20-4. Initial pH value and HCO²-concentration were taken from Xiong et al. 2007 (section 3.1 and table 1).

Step2. Run EQ3.

Step3. Make EQ6 input file to titrate CaO into ERDA-6 brine. The amount of CaO is calculated in the Excel file "MgO in brine", worksheet "ERDA-6".

Step4. Run EQ6.

Step5. Make EQ6 input file to titrate MgO into ERDA-6 brine. The amount of MgO is calculated in the Excel file "MgO in brine", worksheet "ERDA-6".

Appendix A2 EQ3/6 simulation of 3.1g MgO titrated into 77 ml of ERDA-6

The purpose of the simulation is to titrate 3.1 g of MgO into a closed system containing 77 ml of ERDA-6 brine.

Step1. Make EQ3 input file for brine equilibrated with atmospheric concentration of carbon dioxide, using brine recipe of ERDA-6 from appendix B of SP20-4. Initial pH value and HCO²-were taken from Xiong et al. 2007 (section 3.1 and table 1).

Step2. Run EQ3.

Step3. Make EQ6 input file to titrate CaO into ERDA-6 brine. The amount of CaO is calculated in the Excel file "MgO in brine", worksheet "ERDA-6".

Step4. Run EQ6.

Step5. Make EQ6 input file to titrate MgO into ERDA-6 brine. The amount of MgO is calculated in the Excel file "MgO in brine", worksheet "ERDA-6".

Appendix A3 EQ3/6 simulation of 3.0g MgO titrated into 11 ml of GWB

The purpose of the simulation is to titrate 3.0 g of MgO into a closed system containing 11 ml of GWB brine. Initial pH value and HCO²⁻ concentration were taken from Xiong et al. 2007 (section 3.1 and table 1), assuming HCO²⁻ concentration in GWB brine is the same as HCO²⁻ concentration in ERDA-6.

Step1. Make EQ3 input file for brine equilibrated with atmospheric concentration of carbon dioxide, using brine recipe of GWB from appendix B of SP20-4.

Step2. Run EQ3.

Step3. Make EQ6 input file to titrate MgO into GWB brine. The amount of MgO is calculated in the Excel file "MgO in brine", worksheet "GWB".

Step4. Run EQ6.

Appendix A4 EQ3/6 simulation of 3.1g MgO titrated into 77 ml of GWB

The purpose of the simulation is to titrate 3.1 g of MgO into a closed system containing 77 ml of GWB brine. Initial pH value and HCO²⁻ concentration were taken from Xiong et al 2007 (section 3.1 and table 1), assuming HCO²⁻ concentration in GWB brine is the same as HCO²⁻ concentration in ERDA-6.

Step1. Make EQ3 input file for brine equilibrated with atmospheric carbon dioxide, using brine recipe of GWB from appendix B of SP20-4.

Step2. Run EQ3

Step3. Make EQ6 input file to titrate MgO into GWB brine. The amount of MgO is calculated in the Excel file "MgO in brine", worksheet "GWB".

Step4. Run EQ6

Appendix A5 EQ3/6 simulation of 3.0g MgO titrated into 11 ml of simplified GWB

The purpose of the simulation is to titrate 3.0 g of MgO into a closed system containing 11ml of simplified GWB brine.

Step1. Make EQ3 input file for brine equilibrated with atmospheric concentration of carbon dioxide, using brine recipe for simplified GWB (1M MgCl2 + 3.6 M NaCl).

Step2. Run EQ3.

Step3. Make EQ6 input file to titrate MgO into GWB brine. The amount of MgO is calculated in the Excel file "MgO in brine", worksheet "SGWB".

Step4. Run EQ6.

Appendix A6 EQ3/6 simulation of 3.1g MgO titrated into 77 ml of simplified GWB

The purpose of the simulation is to titrate 3.1 g of MgO into a closed system containing 77 ml of GWB brine.

Step1. Make EQ3 input file for brine equilibrated with atmospheric concentration of carbon dioxide, using brine recipe for simplified GWB (1M MgCl2 + 3.6 M NaCl).

Step2. Run EQ3.

Step3. Make EQ6 input file to titrate MgO into GWB brine. The amount of MgO is calculated in the Excel file "MgO in brine", worksheet "SGWB".

Step4. Run EQ6.

Appendix A7 File naming convention for EQ3/6 runs

Table 1. File naming convention for the EQ3/6 runs

erd.3i EQ3 input file for ERDA-6 brine equilibrated with atmospheric concentration of carbon dioxide erd.3p EQ3 pickup file from erd.3i. This file will be used for EQ6 run simulating CaO titrated into ERDA-6 erd.3o EQ3 output file from erd.3i EQ6 input file from erd.3i EQ6 input file for CaO titrated into 11ml of ERDA-6 brine. This file is a descendent of erd.3p erdca-11.6p EQ6 input file from erdca-11.6i. This file will be used for EQ6 run simulating MgO titrated into ERDA-6 erdca-12.6i EQ6 output from erdca-11.6i erdca-12.6i EQ6 input file for MgO titrated into 11ml of ERDA-6 brine, which has been reacted with CaO. This file is a descendent of erdca-11.6p erdca-12.6p EQ6 pickup file from erdca-12.6i erdca-12.6o EQ6 output file from erdca-12.6i erdca-77.6i EQ6 input file from erdca-12.6i erdca-77.6p EQ6 pickup file from erdca-77.6i. This file will be used for EQ6 run simulating MgO titrated into ERDA-6 erdca-77.6p EQ6 output from erdca-77.6i. This file will be used for EQ6 run simulating MgO titrated into ERDA-6 erdca-78.6i EQ6 input file for MgO titrated into 77 ml of ERDA-6 brine, which was been reacted with CaO. This file is a descendent of erdca-77.6p erdca-78.6i EQ6 input file from erdca-78.6i erdca-78.6o EQ6 output file from erdca-78.6i erdca-78.6o EQ6 output file from erdca-78.6i erdca-78.6o EQ6 output file from gwb-3i. This file will be used for EQ6 run simulating MgO titrated into GWB gwb-3i EQ3 input file from gwb-3i. This file will be used for EQ6 run simulating MgO titrated into GWB gwb-30 EQ3 output file from gwb-11.6i gwb-11.6o EQ6 output file from gwb-11.6i gwb-77.6i EQ6 input file for MgO titrated into 11ml of GWB brine. This file is a descendent of gwb-3p gwb-77.6i EQ6 input file from gwb-77.6i gwb-77.6i EQ6 output file from gwb-77.6i gwb-77.6i EQ6 output file from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i gwb-77.6o EQ6 output file from sywbb-3i. This file will be used for EQ6 run simulating MgO titrated into simplified GWB sgwbb-30 EQ3 input file from sywbb-3i.	File Name	Description
erd.3p EQ3 pickup file from erd.3i. This file will be used for EQ6 run simulating CaO titrated into ERDA-6 erd.3o EQ3 output file from erd.3i erdca-11.6i EQ6 input file for CaO titrated into 11ml of ERDA-6 brine. This file is a descendent of erd.3p erdca-11.6o EQ6 output from erdca-11.6i. This file will be used for EQ6 run simulating MgO titrated into ERDA-6 brine into ERDA-6 brine, which has been reacted with CaO. This file is a descendent of erdca-11.6i EQ6 input file for MgO titrated into 11ml of ERDA-6 brine, which has been reacted with CaO. This file is a descendent of erdca-11.6p erdca-12.6p EQ6 pickup file from erdca-12.6i erdca-77.6i EQ6 input file from erdca-12.6i erdca-77.6i EQ6 input file from erdca-77.6i. This file will be used for EQ6 run simulating MgO titrated into ERDA-6 erdca-77.6o EQ6 output from erdca-77.6i. This file will be used for EQ6 run simulating MgO titrated into ERDA-6 erdca-78.6i EQ6 input file for MgO titrated into 77 ml of ERDA-6 brine, which was been reacted with CaO. This file is a descendent of erdca-77.6p erdca-78.6o EQ6 output file form erdca-78.6i erdca-78.6o EQ6 pickup file from erdca-78.6i gwb.3i EQ3 input file for mgwb.3i. This file will be used for EQ6 run simulating MgO titrated into GWB gwb.3o EQ3 output file from gwb.3i. This file will be used for EQ6 run simulating MgO titrated into GWB gwb-71.6i EQ6 input file from gwb-11.6i gwb-77.6p EQ6 output file from gwb-11.6i gwb-77.6p EQ6 input file from gwb-77.6i		<u> </u>
erd.30 EQ3 output file from erd.3i erdca-11.6i EQ6 input file from erdca-11.6i. This file will be used for EQ6 run simulating MgO erdca-11.6o EQ6 output file from erdca-11.6i. This file will be used for EQ6 run simulating MgO erdca-12.6i EQ6 output from erdca-11.6i erdca-12.6i EQ6 input file for MgO titrated into 11ml of ERDA-6 brine, which has been reacted with Ca0. This file is a descendent of erdca-11.6p erdca-12.6o EQ6 output file from erdca-12.6i erdca-12.6o EQ6 output file from erdca-12.6i erdca-17.6o EQ6 output file from erdca-12.6i erdca-77.6o EQ6 output file from erdca-12.6i erdca-77.6o EQ6 output file from erdca-77.6i. This file will be used for EQ6 run simulating MgO titrated into ERDA-6 erdca-77.6o EQ6 output file from erdca-77.6i. This file will be used for EQ6 run simulating MgO titrated into ERDA-6 erdca-78.6i EQ6 input file for MgO titrated into 77 ml of ERDA-6 brine, which was been reacted with Ca0. This file is a descendent of erdca-77.6p erdca-78.6i EQ6 output file from erdca-78.6i erdca-78.6p EQ6 pickup file from gwb-3i. This file will be used for EQ6 run simulating MgO titrated into GWB gwb-3p gwb-11.6p EQ6 input file from gwb-11.6i eQ6 input file from gwb-77.6i eQ6 output file from symb-77.6i eQ7 pickup file from symb-77.6i eQ8 pickup file from symb-77.6i eQ9 pickup file from symb-77.6i		
erd.30 EQ3 output file from erd.3i erdca-11.6i EQ6 input file from erdca-11.6i. This file will be used for EQ6 run simulating MgO erdca-11.6o EQ6 output file from erdca-11.6i. This file will be used for EQ6 run simulating MgO erdca-12.6i EQ6 output from erdca-11.6i erdca-12.6i EQ6 input file for MgO titrated into 11ml of ERDA-6 brine, which has been reacted with Ca0. This file is a descendent of erdca-11.6p erdca-12.6o EQ6 output file from erdca-12.6i erdca-12.6o EQ6 output file from erdca-12.6i erdca-17.6o EQ6 output file from erdca-12.6i erdca-77.6o EQ6 output file from erdca-12.6i erdca-77.6o EQ6 output file from erdca-77.6i. This file will be used for EQ6 run simulating MgO titrated into ERDA-6 erdca-77.6o EQ6 output file from erdca-77.6i. This file will be used for EQ6 run simulating MgO titrated into ERDA-6 erdca-78.6i EQ6 input file for MgO titrated into 77 ml of ERDA-6 brine, which was been reacted with Ca0. This file is a descendent of erdca-77.6p erdca-78.6i EQ6 output file from erdca-78.6i erdca-78.6p EQ6 pickup file from gwb-3i. This file will be used for EQ6 run simulating MgO titrated into GWB gwb-3p gwb-11.6p EQ6 input file from gwb-11.6i eQ6 input file from gwb-77.6i eQ6 output file from symb-77.6i eQ7 pickup file from symb-77.6i eQ8 pickup file from symb-77.6i eQ9 pickup file from symb-77.6i	erd.3p	EQ3 pickup file from erd.3i. This file will be used for EQ6 run simulating CaO titrated into
erdca-11.6i erdca-11.6p EQ6 input file for CaO titrated into 11ml of ERDA-6 brine. This file is a descendent of erd.3p EQ6 pickup file from erdca-11.6i. This file will be used for EQ6 run simulating MgO titrated into ERDA-6 EQ6 output from erdca-11.6i EQ6 input file for MgO titrated into 11ml of ERDA-6 brine, which has been reacted with CaO. This file is a descendent of erdca-11.6p EQ6 pickup file from erdca-12.6i EQ6 output file from erdca-12.6i EQ6 output file from erdca-12.6i EQ6 output file for CaO titrated into 77 ml of ERDA-6 brine. This file is a descendent of erd.3p erdca-77.60 EQ6 pickup file from erdca-77.6i. This file will be used for EQ6 run simulating MgO titrated into ERDA-6 Erdca-77.60 EQ6 output file for MgO titrated into 77 ml of ERDA-6 brine, which was been reacted with CaO. This file is a descendent of erdca-77.6o EQ6 input file for MgO titrated into 77 ml of ERDA-6 brine, which was been reacted with CaO. This file is a descendent of erdca-77.6p EQ6 input file for MgO titrated into 77 ml of ERDA-6 brine, which was been reacted with CaO. This file is a descendent of erdca-77.6p EQ6 input file for MgO titrated with atmospheric concentration of carbon dioxide gwb.3p EQ3 pickup file from gwb.3i. This file will be used for EQ6 run simulating MgO titrated into GWB EQ3 pickup file from gwb.3i EQ6 input file for MgO titrated into 11ml of GWB brine. This file is a descendent of gwb.3p EQ6 output file from gwb-11.6i EQ6 input file for MgO titrated into 77ml of GWB brine. This file is a descendent of gwb.3p EQ6 pickup file from gwb-77.6i EQ7 pickup file for msgwb-77.6i EQ8 pickup file for msgwb-77.6i EQ8 pickup file for msgwb-77.6i		
erda-11.6p EQ6 pickup file from erdca-11.6i. This file will be used for EQ6 run simulating MgO titrated into ERDA-6 erdca-11.60 EQ6 output from erdca-11.6i erdca-12.6i EQ6 input file for MgO titrated into 11ml of ERDA-6 brine, which has been reacted with CaO. This file is a descendent of erdca-11.6p erdca-12.6o EQ6 pickup file from erdca-12.6i erdca-12.6o EQ6 output file from erdca-12.6i erdca-77.6i EQ6 input file from erdca-12.6i erdca-77.6p EQ6 pickup file from erdca-77.6i. This file will be used for EQ6 run simulating MgO titrated into ERDA-6 erdca-77.6o EQ6 output from erdca-77.6i. This file will be used for EQ6 run simulating MgO titrated into ERDA-6 erdca-78.6i EQ6 input file for MgO titrated into 77 ml of ERDA-6 brine, which was been reacted with CaO. This file is a descendent of erdca-77.6p erdca-78.6i EQ6 input file for MgO titrated into 77 ml of ERDA-6 brine, which was been reacted with CaO. This file is a descendent of erdca-77.6p erdca-78.6p EQ6 pickup file from erdca-78.6i erdca-78.6o EQ6 output file from erdca-78.6i gwb.3i EQ3 input file from erdca-78.6i gwb.3p EQ3 pickup file from gwb.3i. This file will be used for EQ6 run simulating MgO titrated into GWB gwb.30 EQ3 output file from gwb.3i. This file will be used for EQ6 run simulating MgO titrated into GWB gwb.30 EQ6 pickup file from gwb-11.6i gwb-11.6o EQ6 pickup file from gwb-11.6i gwb-77.6i EQ6 input file from gwb-11.6i gwb-77.6o EQ6 output file from gwb-77.6i EQ3 pickup file from gwb-77.6i EQ4 input file from gwb-77.6i EQ5 pickup file from gwb-77.6i EQ6 pickup from gwb-77.6i	erd.3o	EQ3 output file from erd.3i
erdca-11.6p EQ6 pickup file from erdca-11.6i. This file will be used for EQ6 run simulating MgO titrated into ERDA-6 EQ6 output from erdca-11.6i erdca-12.6i EQ6 input file for MgO titrated into 11ml of ERDA-6 brine, which has been reacted with CaO. This file is a descendent of erdca-11.6p erdca-12.6o EQ6 pickup file from erdca-12.6i erdca-12.6o EQ6 output file from erdca-12.6i erdca-77.6i EQ6 input file for CaO titrated into 77 ml of ERDA-6 brine. This file is a descendent of erd.3p erdca-77.6o EQ6 pickup file from erdca-77.6i. This file will be used for EQ6 run simulating MgO titrated into ERDA-6 erdca-77.6o EQ6 output file for MgO titrated into 77 ml of ERDA-6 brine, which was been reacted with CaO. This file is a descendent of erdca-77.6p erdca-78.6p EQ6 pickup file from erdca-78.6i EQ6 pickup file from erdca-78.6i erdca-78.6p EQ6 pickup file from erdca-78.6i erdca-78.6p EQ6 pickup file from erdca-78.6i erdca-78.6p EQ6 pickup file from erdca-78.6i EQ6 output file from erdca-78.6i gwb.3i EQ3 input file from gwb.3i. This file will be used for EQ6 run simulating MgO titrated into GWB gwb.30 EQ3 output file from gwb.3i. This file will be used for EQ6 run simulating MgO titrated into GWB gwb.31 EQ6 input file from gwb.3i EQ6 pickup file from gwb-11.6i EQ6 input file from gwb-11.6i EQ6 input file from gwb-11.6i EQ6 pickup file from gwb-11.6i EQ6 output file from gwb-11.6i EQ6 input file from gwb-77.6i EQ6 pickup file from gwb-77.6i EQ6 input file from gwb-77.6i EQ6 input file from gwb-77.6i EQ6 pickup file from gwb-77.6i EQ6 input file from gwb-77.6i EQ6 input file from gwb-77.6i EQ6 input file from gwb-77.6i	erdca-11.6i	EQ6 input file for CaO titrated into 11ml of ERDA-6 brine. This file is a descendent of
titrated into ERDA-6 erdca-11.60 EQ6 output from erdca-11.61 EQ6 input file for MgO titrated into 11ml of ERDA-6 brine, which has been reacted with CaO. This file is a descendent of erdca-11.6p erdca-12.60 EQ6 pickup file from erdca-12.6i erdca-12.60 EQ6 output file from erdca-12.6i erdca-77.6i EQ6 input file for CaO titrated into 77 ml of ERDA-6 brine. This file is a descendent of erd.3p erdca-77.6p EQ6 pickup file from erdca-77.6i. This file will be used for EQ6 run simulating MgO titrated into ERDA-6 erdca-77.60 EQ6 output from erdca-77.6i. This file will be used for EQ6 run simulating MgO titrated into ERDA-6 erdca-78.60 EQ6 output from erdca-77.6i erdca-78.60 EQ6 pickup file from erdca-78.6i erdca-78.60 EQ6 pickup file from erdca-78.6i gwb.3i EQ3 input file from erdca-78.6i gwb.3a EQ3 pickup file from gwb.3i. This file will be used for EQ6 run simulating MgO titrated into GWB gwb.30 EQ3 output file from gwb.3i. This file will be used for EQ6 run simulating MgO titrated into GWB gwb-11.6i EQ6 input file from gwb.3i EQ6 input file from gwb-11.6i gwb-11.6o EQ6 output file from gwb-11.6i gwb-77.6i EQ6 input file from gwb-11.6i gwb-77.6i EQ6 input file from gwb-77.6i EQ6 jickup file from gwb-77.6i EQ6 input file from gwb-77.6i EQ6 input file from gwb-77.6i EQ6 jickup file from gwb-77.6i EQ6 jickup file from gwb-77.6i EQ6 jickup file from gwb-77.6i Sqwb-77.60 EQ6 output file from gwb-77.6i EQ6 jickup file from gwb-77.6i EQ6 jickup file from gwb-77.6i Sqwb-77.60 EQ6 jickup file from gwb-77.6i Sqwb-77.60 EQ6 jickup file from gwb-77.6i		erd.3p
erdca-11.60 EQ6 output from erdca-11.6i erdca-12.6i EQ6 input file for MgO titrated into 11ml of ERDA-6 brine, which has been reacted with CaO. This file is a descendent of erdca-11.6p erdca-12.60 EQ6 output file from erdca-12.6i erdca-77.6i EQ6 input file from erdca-12.6i erdca-77.6i EQ6 input file from erdca-12.6i erdca-77.6o EQ6 output file from erdca-77.6i. This file will be used for EQ6 run simulating MgO titrated into ERDA-6 erdca-77.6o EQ6 output file from erdca-77.6i. This file will be used for EQ6 run simulating MgO titrated into ERDA-6 erdca-78.6i EQ6 output file from erdca-77.6i erdca-78.6i EQ6 input file for MgO titrated into 77 ml of ERDA-6 brine, which was been reacted with CaO. This file is a descendent of erdca-77.6p erdca-78.6o EQ6 output file from erdca-78.6i erdca-78.6o EQ6 output file from erdca-78.6i gwb.3i EQ3 input file for GWB brine equilibrated with atmospheric concentration of carbon dioxide gwb.3p gwb-30 EQ3 output file from gwb.3i. This file will be used for EQ6 run simulating MgO titrated into GWB gwb-11.6i EQ6 input file from gwb.11.6i gwb-11.6o EQ6 output file from gwb-11.6i gwb-17.6o EQ6 output file from gwb-11.6i gwb-77.6i EQ6 input file from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i gwb-77.6o EQ6 output file from swb-77.6i sywbb.3i EQ3 input file from swb-77.6i gwb-77.6o EQ6 output file from swb-77.6i symbb.3i EQ3 input file from swb-77.6i symbb.3p EQ3 pickup file from swb-77.6i symbb.3i EQ3 input file from swb-77.6i symbb.3i EQ3 input file from symbb.3i. This file will be used for EQ6 run simulating MgO titrated into simplified GWB brine equilibrated with atmospheric concentration of carbon dioxide symbb.3p	erdca-11.6p	EQ6 pickup file from erdca-11.6i. This file will be used for EQ6 run simulating MgO
erdca-12.6i EQ6 input file for MgO titrated into 11ml of ERDA-6 brine, which has been reacted with CaO. This file is a descendent of erdca-11.6p erdca-12.60 EQ6 pickup file from erdca-12.6i erdca-12.60 EQ6 output file from erdca-12.6i erdca-77.6i EQ6 input file for CaO titrated into 77 ml of ERDA-6 brine. This file is a descendent of erd.3p erdca-77.6p EQ6 pickup file from erdca-77.6i. This file will be used for EQ6 run simulating MgO titrated into ERDA-6 erdca-77.60 EQ6 output from erdca-77.6i erdca-78.6i EQ6 input file for MgO titrated into 77 ml of ERDA-6 brine, which was been reacted with CaO. This file is a descendent of erdca-77.6p erdca-78.6p EQ6 pickup file from erdca-78.6i erdca-78.6p EQ6 pickup file from erdca-78.6i gwb.3i EQ3 input file for GWB brine equilibrated with atmospheric concentration of carbon dioxide gwb.3p gwb.30 EQ3 output file from gwb.3i. This file will be used for EQ6 run simulating MgO titrated into GWB gwb.31 EQ3 input file from gwb.3i gwb-11.6i EQ6 input file from gwb-11.6i gwb-11.6o EQ6 output file from gwb-11.6i gwb-17.6i EQ6 input file for MgO titrated into 77ml of GWB brine. This file is a descendent of gwb.3p gwb-77.6i EQ6 input file from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i eQ3 pickup file from gwb-77.6i eQ3 pickup file from gwb-77.6i eQ4 output file from gwb-77.6i eQ5 pickup from gwb-77.6i eQ6 output file from gwb-77.6i eQ6 jinput file for simplified GWB brine equilibrated with atmospheric concentration of carbon dioxide eqab.3p equb-77.6o EQ6 output file from symb-77.6i eQ3 pickup file from symb-78.6i eQ3 pickup file from symb-78.6i eQ3 pickup file from symb-78.6i		
crdca-12.6p EQ6 pickup file from erdca-12.6i erdca-12.6o EQ6 output file from erdca-12.6i erdca-17.6i EQ6 input file from erdca-12.6i erdca-77.6p EQ6 pickup file from erdca-12.6i erdca-77.6p EQ6 pickup file from erdca-77.6i. This file will be used for EQ6 run simulating MgO titrated into ERDA-6 erdca-77.6o EQ6 output from erdca-77.6i erdca-78.6i EQ6 input file from erdca-77.6i erdca-78.6p EQ6 pickup file from erdca-77.6p erdca-78.6p EQ6 pickup file from erdca-78.6i erdca-78.6p EQ6 pickup file from erdca-78.6i erdca-78.6o EQ6 output file from erdca-78.6i erdca-78.6o EQ6 jickup file from erdca-78.6i gwb.3i EQ3 input file for GWB brine equilibrated with atmospheric concentration of carbon dioxide gwb.3p gwb.30 EQ3 output file from gwb.3i. This file will be used for EQ6 run simulating MgO titrated into GWB gwb-11.6i EQ6 input file from gwb-11.6i gwb-11.6p EQ6 output file from gwb-11.6i gwb-77.6i EQ6 input file from gwb-11.6i gwb-77.6o EQ6 output file from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i sywbb.3i EQ3 input file from gwb-77.6i EQ3 pickup file from symb-77.6i EQ3 pickup file from symb-77.6i EQ3 pickup file from symb-77.6i		
erdca-12.6p EQ6 pickup file from erdca-12.6i erdca-12.6o EQ6 output file from erdca-12.6i erdca-77.6i EQ6 input file from erdca-12.6i erdca-77.6p EQ6 pickup file from erdca-77.6i. This file will be used for EQ6 run simulating MgO titrated into ERDA-6 erdca-77.6o EQ6 output from erdca-77.6i erdca-78.6i EQ6 input file for MgO titrated into 77 ml of ERDA-6 brine, which was been reacted with CaO. This file is a descendent of erdca-77.6p erdca-78.6p EQ6 pickup file from erdca-78.6i erdca-78.6o EQ6 output file from erdca-78.6i gwb.3i EQ3 input file for GWB brine equilibrated with atmospheric concentration of carbon dioxide gwb.3p gwb-30 EQ3 output file from gwb.3i gwb-11.6i EQ6 input file from gwb-11.6i gwb-11.6p EQ6 pickup file from gwb-11.6i gwb-77.6i EQ6 output file from gwb-11.6i gwb-77.6i EQ6 input file for MgO titrated into 77ml of GWB brine. This file is a descendent of gwb.3p gwb-77.6i EQ6 output file from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i sywbb.3i EQ3 input file for MgO titrated into 77ml of GWB brine. This file is a descendent of gwb-77.6o EQ6 output file from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i sywbb.3i EQ3 input file from gwb-77.6i sywbb.3i EQ3 input file from gwb-77.6i sywbb.3i EQ3 pickup file from gwb-77.6i	erdca-12.6i	
erdca-12.60 EQ6 output file from erdca-12.6i erdca-77.6i EQ6 input file for CaO titrated into 77 ml of ERDA-6 brine. This file is a descendent of erd.3p erdca-77.60 EQ6 pickup file from erdca-77.6i. This file will be used for EQ6 run simulating MgO titrated into ERDA-6 erdca-77.60 EQ6 output from erdca-77.6i erdca-78.6i EQ6 input file for MgO titrated into 77 ml of ERDA-6 brine, which was been reacted with CaO. This file is a descendent of erdca-77.6p erdca-78.6p EQ6 pickup file from erdca-78.6i erdca-78.6o EQ6 output file from erdca-78.6i gwb.3i EQ3 input file for GWB brine equilibrated with atmospheric concentration of carbon dioxide gwb.3p gwb.3o EQ3 output file from gwb.3i. This file will be used for EQ6 run simulating MgO titrated into GWB gwb-11.6i EQ6 input file from gwb-11.6i gwb-11.6o EQ6 output file from gwb-11.6i gwb-77.6i EQ6 output file from gwb-11.6i gwb-77.6o EQ6 output file from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i sgwbb.3i EQ3 input file for MgO titrated into 77ml of GWB brine. This file is a descendent of gwb.3p gwb-77.6o EQ6 output file from gwb-77.6i sgwb-77.6o EQ6 output file from gwb-77.6i sgwb-3p gwb-77.6o EQ6 output file from gwb-77.6i sgwb-3p EQ3 pickup file from gwb-77.6i sgwb-3p EQ3 pickup file from sgwb-77.6i sgwb-79 EQ4 pickup file from sgwb-77.6i sgwb-79 EQ5 pickup file from sgwb-77.6i		
erdca-77.6i EQ6 input file for CaO titrated into 77 ml of ERDA-6 brine. This file is a descendent of erd.3p erdca-77.6p EQ6 pickup file from erdca-77.6i. This file will be used for EQ6 run simulating MgO titrated into ERDA-6 erdca-77.60 EQ6 output from erdca-77.6i erdca-78.6i EQ6 input file for MgO titrated into 77 ml of ERDA-6 brine, which was been reacted with CaO. This file is a descendent of erdca-77.6p erdca-78.6p EQ6 pickup file from erdca-78.6i gwb.3i EQ3 input file from erdca-78.6i gwb.3p EQ3 pickup file from gwb.3i. This file will be used for EQ6 run simulating MgO titrated into GWB gwb-11.6i EQ6 input file from gwb.3i gwb-11.6p EQ6 pickup file from gwb-11.6i gwb-77.6i EQ6 output file from gwb-11.6i gwb-77.6i EQ6 input file from gwb-11.6i gwb-77.6o EQ6 output file from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i gwb-77.6o EQ6 input file from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i gwb-77.6o EQ3 input file from gwb-77.6i gwb-77.6o EQ3 pickup file from gwb-77.6i gwb-77.6o EQ3 pickup file from gwb-77.6i gwb-77.6o EQ3 pickup file from symb-77.6i gwb-77.6o EQ3 pickup file from symb-77.6i		
erdca-77.6p EQ6 pickup file from erdca-77.6i. This file will be used for EQ6 run simulating MgO titrated into ERDA-6 Erdca-77.60 EQ6 output from erdca-77.6i EQ6 pickup file for MgO titrated into 77 ml of ERDA-6 brine, which was been reacted with CaO. This file is a descendent of erdca-77.6p EQ6 pickup file from erdca-78.6i EQ6 pickup file from erdca-78.6i EQ6 output file from erdca-78.6i EQ3 input file for GWB brine equilibrated with atmospheric concentration of carbon dioxide gwb.3p EQ3 pickup file from gwb.3i. This file will be used for EQ6 run simulating MgO titrated into GWB EQ3 output file from gwb.3i EQ6 input file for MgO titrated into 11ml of GWB brine. This file is a descendent of gwb.3p gwb-11.6i EQ6 pickup file from gwb-11.6i gwb-11.6o EQ6 output file from gwb-11.6i EQ6 input file for MgO titrated into 77ml of GWB brine. This file is a descendent of gwb.3p gwb-77.6i EQ6 input file for MgO titrated into 77ml of GWB brine. This file is a descendent of gwb.3p gwb-77.6o EQ6 output file from gwb-77.6i EQ6 input file for mgb-77.6i EQ6 input file for MgO titrated into 77ml of GWB brine. This file is a descendent of gwb.3p gwb-77.6o EQ6 output file from gwb-77.6i EQ6 input file for MgO titrated into 77ml of GWB brine. This file is a descendent of gwb.3p gwb-77.6o EQ6 output file from gwb-77.6i EQ6 input file for MgO titrated into 77ml of GWB brine. This file is a descendent of gwb.3p gwb-77.6o EQ6 output file from gwb-77.6i EQ6 input file for MgO titrated into 77ml of GWB brine. This file is a descendent of gwb.3p gwb-77.6o EQ6 output file from gwb-77.6i		<u> </u>
erdca-77.6p EQ6 pickup file from erdca-77.6i. This file will be used for EQ6 run simulating MgO titrated into ERDA-6 Erdca-77.60 EQ6 output from erdca-77.6i EQ6 input file for MgO titrated into 77 ml of ERDA-6 brine, which was been reacted with CaO. This file is a descendent of erdca-77.6p EQ6 pickup file from erdca-78.6i EQ6 output file from erdca-78.6i EQ6 output file from erdca-78.6i EQ3 input file from erdca-78.6i EQ3 input file from gwb.3i. This file will be used for EQ6 run simulating MgO titrated into GWB gwb.30 EQ3 output file from gwb.3i EQ6 input file from gwb.3i EQ6 input file from gwb.3i EQ6 input file from gwb.11.6i EQ6 input file from gwb-11.6i EQ6 output file from gwb-17.6i EQ6 input file from gwb-77.6i	erdca-77.6i	
titrated into ERDA-6 erdca-77.60 EQ6 output from erdca-77.6i erdca-78.6i EQ6 input file for MgO titrated into 77 ml of ERDA-6 brine, which was been reacted with CaO. This file is a descendent of erdca-77.6p erdca-78.6p EQ6 pickup file from erdca-78.6i erdca-78.6o EQ6 output file from erdca-78.6i gwb.3i EQ3 input file for GWB brine equilibrated with atmospheric concentration of carbon dioxide gwb.3p EQ3 pickup file from gwb.3i. This file will be used for EQ6 run simulating MgO titrated into GWB gwb-30 EQ3 output file from gwb.3i gwb-11.6i EQ6 input file for MgO titrated into 11ml of GWB brine. This file is a descendent of gwb.3p gwb-11.6o EQ6 pickup file from gwb-11.6i gwb-77.6i EQ6 output file from gwb-11.6i gwb-77.6o EQ6 output file for MgO titrated into 77ml of GWB brine. This file is a descendent of gwb.3p gwb-77.6o EQ6 output file from gwb-77.6i gwb-77.6o EQ6 pickup from gwb-77.6i gwb-77.6o EQ6 pickup from gwb-77.6i EQ3 input file for simplified GWB brine equilibrated with atmospheric concentration of carbon dioxide sgwbb.3p EQ3 pickup file from sgwbb.3i. This file will be used for EQ6 run simulating MgO titrated into simplified GWB		
erdca-77.60 EQ6 output from erdca-77.6i erdca-78.6i EQ6 input file for MgO titrated into 77 ml of ERDA-6 brine, which was been reacted with CaO. This file is a descendent of erdca-77.6p erdca-78.6p EQ6 pickup file from erdca-78.6i erdca-78.60 EQ6 output file from erdca-78.6i gwb.3i EQ3 input file for GWB brine equilibrated with atmospheric concentration of carbon dioxide gwb.3p EQ3 pickup file from gwb.3i. This file will be used for EQ6 run simulating MgO titrated into GWB gwb-11.6i EQ6 input file from gwb.3i gwb-11.6p EQ6 pickup file from gwb-11.6i gwb-11.6o EQ6 output file from gwb-11.6i gwb-77.6i EQ6 input file for MgO titrated into 77ml of GWB brine. This file is a descendent of gwb.3p gwb-77.6o EQ6 output file from gwb-77.6i gwb-77.6o EQ6 pickup from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i EQ3 input file for simplified GWB brine equilibrated with atmospheric concentration of carbon dioxide sgwbb.3p EQ3 pickup file from sgwbb.3i. This file will be used for EQ6 run simulating MgO titrated into simplified GWB	erdca-77.6p	
erdca-78.6i		
CaO. This file is a descendent of erdca-77.6p erdca-78.6p EQ6 pickup file from erdca-78.6i erdca-78.6o EQ6 output file from erdca-78.6i gwb.3i EQ3 input file for GWB brine equilibrated with atmospheric concentration of carbon dioxide gwb.3p EQ3 pickup file from gwb.3i. This file will be used for EQ6 run simulating MgO titrated into GWB gwb.30 EQ3 output file from gwb.3i gwb-11.6i EQ6 input file for MgO titrated into 11ml of GWB brine. This file is a descendent of gwb.3p gwb-11.6o EQ6 output file from gwb-11.6i gwb-77.6i EQ6 input file for MgO titrated into 77ml of GWB brine. This file is a descendent of gwb.3p gwb-77.6o EQ6 output file from gwb-11.6i gwb-77.6o EQ6 input file for MgO titrated into 77ml of GWB brine. This file is a descendent of gwb-77.6o EQ6 output file from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i EQ6 output file from gwb-77.6i EQ6 output file from gwb-77.6i Sgwb.3i EQ3 input file for simplified GWB brine equilibrated with atmospheric concentration of carbon dioxide EQ3 pickup file from sgwbb.3i. This file will be used for EQ6 run simulating MgO titrated into simplified GWB		
erdca-78.6p EQ6 pickup file from erdca-78.6i erdca-78.6o EQ6 output file from erdca-78.6i gwb.3i EQ3 input file for GWB brine equilibrated with atmospheric concentration of carbon dioxide gwb.3p EQ3 pickup file from gwb.3i. This file will be used for EQ6 run simulating MgO titrated into GWB gwb.30 EQ3 output file from gwb.3i gwb-11.6i EQ6 input file for MgO titrated into 11ml of GWB brine. This file is a descendent of gwb.3p gwb-11.6o EQ6 pickup file from gwb-11.6i gwb-17.6i EQ6 input file from gwb-11.6i gwb-77.6i EQ6 input file for MgO titrated into 77ml of GWB brine. This file is a descendent of gwb.3p gwb-77.6o EQ6 pickup from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i gwb-77.6o EQ3 input file for simplified GWB brine equilibrated with atmospheric concentration of carbon dioxide sgwbb.3p EQ3 pickup file from sgwbb.3i. This file will be used for EQ6 run simulating MgO titrated into simplified GWB	erdca-78.6i	
erdca-78.60 EQ6 output file from erdca-78.6i gwb.3i EQ3 input file for GWB brine equilibrated with atmospheric concentration of carbon dioxide gwb.3p EQ3 pickup file from gwb.3i. This file will be used for EQ6 run simulating MgO titrated into GWB gwb.30 EQ3 output file from gwb.3i gwb-11.6i EQ6 input file for MgO titrated into 11ml of GWB brine. This file is a descendent of gwb.3p gwb-11.6o EQ6 pickup file from gwb-11.6i gwb-11.6o EQ6 output file from gwb-11.6i gwb-77.6i EQ6 input file for MgO titrated into 77ml of GWB brine. This file is a descendent of gwb.3p gwb-77.6o EQ6 pickup from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i EQ6 output file from gwb-77.6i EQ3 input file for simplified GWB brine equilibrated with atmospheric concentration of carbon dioxide gwbb.3p EQ3 pickup file from sgwbb.3i. This file will be used for EQ6 run simulating MgO titrated into simplified GWB		· • · · · · · · · · · · · · · · · · · ·
gwb.3i EQ3 input file for GWB brine equilibrated with atmospheric concentration of carbon dioxide gwb.3p EQ3 pickup file from gwb.3i. This file will be used for EQ6 run simulating MgO titrated into GWB gwb.30 EQ3 output file from gwb.3i gwb-11.6i EQ6 input file for MgO titrated into 11ml of GWB brine. This file is a descendent of gwb.3p gwb-11.6o EQ6 pickup file from gwb-11.6i gwb-77.6i EQ6 input file for MgO titrated into 77ml of GWB brine. This file is a descendent of gwb.3p gwb-77.6o EQ6 input file for MgO titrated into 77ml of GWB brine. This file is a descendent of gwb.3p gwb-77.6o EQ6 output file from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i sgwbb.3i EQ3 input file for simplified GWB brine equilibrated with atmospheric concentration of carbon dioxide sgwbb.3p EQ3 pickup file from sgwbb.3i. This file will be used for EQ6 run simulating MgO titrated into simplified GWB		
gwb.3p EQ3 pickup file from gwb.3i. This file will be used for EQ6 run simulating MgO titrated into GWB gwb.3o EQ3 output file from gwb.3i EQ6 input file for MgO titrated into 11ml of GWB brine. This file is a descendent of gwb.3p gwb-11.6o EQ6 pickup file from gwb-11.6i gwb-77.6i EQ6 input file from gwb-11.6i EQ6 input file for MgO titrated into 77ml of GWB brine. This file is a descendent of gwb.3p gwb-77.6o EQ6 pickup from gwb-77.6i EQ6 pickup from gwb-77.6i EQ6 output file from gwb-77.6i Sgwb-3p EQ6 output file from gwb-77.6i EQ6 output file from gwb-77.6i EQ7 pickup from gwb-77.6i EQ3 input file for simplified GWB brine equilibrated with atmospheric concentration of carbon dioxide Sgwbb.3p EQ3 pickup file from sgwbb.3i. This file will be used for EQ6 run simulating MgO titrated into simplified GWB		
into GWB gwb.30 EQ3 output file from gwb.3i gwb-11.6i EQ6 input file for MgO titrated into 11ml of GWB brine. This file is a descendent of gwb.3p gwb-11.6p EQ6 pickup file from gwb-11.6i gwb-11.6o EQ6 output file from gwb-11.6i gwb-77.6i EQ6 input file for MgO titrated into 77ml of GWB brine. This file is a descendent of gwb.3p gwb-77.6p EQ6 pickup from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i sgwbb.3i EQ3 input file for simplified GWB brine equilibrated with atmospheric concentration of carbon dioxide sgwbb.3p EQ3 pickup file from sgwbb.3i. This file will be used for EQ6 run simulating MgO titrated into simplified GWB		
gwb-11.6i EQ6 input file from gwb.3i gwb-11.6i EQ6 input file for MgO titrated into 11ml of GWB brine. This file is a descendent of gwb.3p gwb-11.6o EQ6 pickup file from gwb-11.6i gwb-11.6o EQ6 output file from gwb-11.6i gwb-77.6i EQ6 input file for MgO titrated into 77ml of GWB brine. This file is a descendent of gwb.3p gwb-77.6o EQ6 pickup from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i sgwbb.3i EQ3 input file for simplified GWB brine equilibrated with atmospheric concentration of carbon dioxide sgwbb.3p EQ3 pickup file from sgwbb.3i. This file will be used for EQ6 run simulating MgO titrated into simplified GWB	gwb.3p	
gwb-11.6i EQ6 input file for MgO titrated into 11ml of GWB brine. This file is a descendent of gwb.3p gwb-11.6p EQ6 pickup file from gwb-11.6i gwb-11.6o EQ6 output file from gwb-11.6i gwb-77.6i EQ6 input file for MgO titrated into 77ml of GWB brine. This file is a descendent of gwb.3p gwb-77.6p EQ6 pickup from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i sgwbb.3i EQ3 input file for simplified GWB brine equilibrated with atmospheric concentration of carbon dioxide sgwbb.3p EQ3 pickup file from sgwbb.3i. This file will be used for EQ6 run simulating MgO titrated into simplified GWB		
gwb-11.6p EQ6 pickup file from gwb-11.6i gwb-11.6o EQ6 output file from gwb-11.6i gwb-77.6i EQ6 input file for MgO titrated into 77ml of GWB brine. This file is a descendent of gwb.3p gwb-77.6p EQ6 pickup from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i sgwb3i EQ3 input file for simplified GWB brine equilibrated with atmospheric concentration of carbon dioxide sgwb.3p EQ3 pickup file from sgwbb.3i. This file will be used for EQ6 run simulating MgO titrated into simplified GWB		
gwb-11.60 EQ6 output file from gwb-11.6i gwb-77.6i EQ6 input file for MgO titrated into 77ml of GWB brine. This file is a descendent of gwb.3p gwb-77.6p EQ6 pickup from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i sgwb3i EQ3 input file for simplified GWB brine equilibrated with atmospheric concentration of carbon dioxide sgwb3p EQ3 pickup file from sgwbb.3i. This file will be used for EQ6 run simulating MgO titrated into simplified GWB	gwb-11.6i	
gwb-77.6i EQ6 output file from gwb-11.6i gwb-77.6i EQ6 input file for MgO titrated into 77ml of GWB brine. This file is a descendent of gwb.3p gwb-77.6p EQ6 pickup from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i sgwbb.3i EQ3 input file for simplified GWB brine equilibrated with atmospheric concentration of carbon dioxide sgwbb.3p EQ3 pickup file from sgwbb.3i. This file will be used for EQ6 run simulating MgO titrated into simplified GWB	1 11 6	
gwb-77.6i EQ6 input file for MgO titrated into 77ml of GWB brine. This file is a descendent of gwb.3p gwb-77.6p EQ6 pickup from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i sgwbb.3i EQ3 input file for simplified GWB brine equilibrated with atmospheric concentration of carbon dioxide sgwbb.3p EQ3 pickup file from sgwbb.3i. This file will be used for EQ6 run simulating MgO titrated into simplified GWB		
gwb-77.6p EQ6 pickup from gwb-77.6i gwb-77.6o EQ6 output file from gwb-77.6i sgwbb.3i EQ3 input file for simplified GWB brine equilibrated with atmospheric concentration of carbon dioxide EQ3 pickup file from sgwbb.3i. This file will be used for EQ6 run simulating MgO titrated into simplified GWB		<u> </u>
gwb-77.60 EQ6 pickup from gwb-77.6i gwb-77.60 EQ6 output file from gwb-77.6i sgwbb.3i EQ3 input file for simplified GWB brine equilibrated with atmospheric concentration of carbon dioxide sgwbb.3p EQ3 pickup file from sgwbb.3i. This file will be used for EQ6 run simulating MgO titrated into simplified GWB	gwb-//.61	
gwb-77.60 EQ6 output file from gwb-77.6i sgwbb.3i EQ3 input file for simplified GWB brine equilibrated with atmospheric concentration of carbon dioxide sgwbb.3p EQ3 pickup file from sgwbb.3i. This file will be used for EQ6 run simulating MgO titrated into simplified GWB	1 77 (
sgwbb.3i EQ3 input file for simplified GWB brine equilibrated with atmospheric concentration of carbon dioxide sgwbb.3p EQ3 pickup file from sgwbb.3i. This file will be used for EQ6 run simulating MgO titrated into simplified GWB		
carbon dioxide sgwbb.3p EQ3 pickup file from sgwbb.3i. This file will be used for EQ6 run simulating MgO titrated into simplified GWB		
into simplified GWB	sgwbb.31	
	sgwbb.3p	
	sgwbb.3o	

sgwbb-11.6i	EQ6 input file for MgO titrated into 11ml of simplified GWB brine. This file is a descendent of sgwbb.3p
sgwbb-11.6p	EQ6 pickup file from sgwbb-11.6i
sgwbb-11.60	EQ6 output file from sgwbb-11.6i
sgwbb-77.6i	EQ6 input file for MgO titrated into 77ml of simplified GWB brine. This file is a descendent of sgwbb.3p
sgwbb-77.6p	EQ6 pickup file from sgwbb-77.6i
sgwbb-77.60	EQ6 output file from sgwbb-77.6i

Appendix B Microsoft Excel workbooks

File Name	Description
Brine acid base titration	Calculated pH conversion factor in section 3.3
Cl analysis	Calculated Cl concentration that was used in Excel file Plots(review)
ICPAES	Calculated Mg, Ca concentration used in Excel file Plots(review)
Plots	Generated figures in section 4.2-4.4
MgO in brine	Calculated the amount of MgO and CaO used in EQ3/6 input file

Trone, Janis R

From:

Leigh, Christi D

Sent:

Friday, May 15, 2009 1:28 PM

To:

Trone, Janis R

Cc:

Deng, Haoran

Subject:

Re: Signature Authority

I authorize Janis Trone to sign the cover page for me for the report titled "Experimental Work Conducted on MgO Long-Term Hydration." I have signed the Management DRC already.

Christi Leigh

Manager 6712 Repository Investigations Sandia National Laboratories Carlsbad, NM 575-234-0038

APPENDIX A

This appendix outlines the EQ3/6 calculations performed supporting "Experimental work conducted on MgO long-term hydration". The EQ3/6 files can be found in the CD. There will not be printed copy for this data package.

Appendix B Microsoft Excel workbooks

This appendix includes data files used in the MgO report, "Experimental work conducted on MgO long-term hydration". Total of 63 pagea of data sheets is attached to Appendix B.

File Name	Description				
Brine acid base titration	Calculated pH conversion factor in section 3.3				
Cl analysis	Calculated Cl concentration that used in Excel file Plots				
ICPAES	Calculated Mg, Ca concentration used in Excel file Plots				
Plots	Generated figures in section 4.2-4.4				
MgO in brine	Calculated the amount of MgO and CaO used in EQ3/6 input file				

2/6/2007	Collection Date	Time (days	XRD	B/P(18/43)	Brucite mol%	pH	CI- IC (mole/I)	True Mg mole/l	True Ca mole/I
ER20-S1	2/13/2007	7		0	5.54	8.67	0.00	2.29E-02	1.66E-02
ER20-S2	2/13/2007	7			5.06	8.56	0.00	2.15E-02	1,13E-02
ER20-S3	3/2/2007	24	P,H		14.67	8.98	0.00	0,006+00	0.00E+00
ER20-S4	3/2/2007	24			28.4	8.96	0.00	0.00E+00	.0.00E+00
ER20-S5	3/19/2007	41	P,B,H	0.085714	33.68	9.35	0.00	1.46E-02	8.33E-03
ER20-S6	3/19/2007	41			33.73	9.28	0.00	1,37E-02	7.86E-03
ER20-S7	3/28/2007	50	P,B,H,12	0.166667		9.39	4.54	1.765-02	1.12E-02
ER20-S8	3/28/2007	50	P,B,H,12			9.40	4.34	1.606-02	1.12E-02
ER20-S9	4/16/2007	69	P,B,12	0.189655		9.42	0.00		
ER20-S10	4/16/2007	69				9.36	0.00		
ER20-S11	5/30/2007	113	P,B,H,12	0.35		9.37	4.51		
ER20-S12	5/30/2007	113				9.34	4.48		
ER20S13	8/23/2007	198	P,B,H,12	0.441176	-	9.40	4.54	9.89E-02	1.18E-02
ER20S14	8/23/2007	198				9.49	4.12	8.42E-02	1.288-02
ER20S15	12/11/2007	308	P,B,H,12	0.6		9.45	4.67	0.00E+00	1.22E-02
ER20S16	12/11/2007	308				9.42	4.71	0.00E+00	1.21E-02
ER20S17	6/18/2008	498	P,B,H,12	0.15625		9.33	4.41	1,17E-02	1.45E-02
ER20S18	6/18/2008	498			-	9.40	4.37	1,28E-02	1.52E-02
ER3-M	Collection Date		XRD	B/P(18/43)	Brucite mol%		CI- IC (mole/l)	True Mg mole/l	True Ca mole/l
ER3-M1	2/13/2007	7				9.16	0.00	1.47E-02	1.60E-02
ER3-M2	2/13/2007	7	P,H			9.13	0.00	1.39E-02	1.65E-02
ER3-M3	3/2/2007	24	P,H		3.06	9.76	2,21	7.56E-03	1.53E-02
ER3-M4	3/2/2007	24				9.74	4.81	5.97E-03	1.53E-02
ER3-M5	3/28/2007	50	P,B,H	0.04	8.47	10.40	5.04		1.70E-02
ER3-M6	3/28/2007	50	P,B,H		2.92	10.40	5.00		1.76E-02
ER3-M7	5/30/2007	113	P,B,H,12	0.06		11.06	4.46		1.63E-02
ER3-M8	5/30/2007	113				11.11	4.40		1.64E-02
ER3-M9	2/12/2008	371	P,B H	0.153846		10.88	4.52	0,00E+00	2.10E-02
ER3-M10	2/12/2008	371				9.41	5.06	0.00E+00	9.08E-03

- 1 Collection Date in column B can be found in notebook WIPP-MMMgO-5, p60-71
- 2 Time in column C = collection date in column B starting date in cell A1 (the starting date can be found in WIPP-MMMgO-5, p60-71)
- 3 Column XRD, B/P(18/43) and Brucite mol% are not usded in the report
- 4 pH in column G can be found in notebook WIPP-MMMgO-5, p60-71.
- 5 CI -IC (mole/l) in column H can be found in Excell file "Cl analysis", column D.
- 6 True Mg mol/l in column I can be found in excell file "ICP-AES" column G.
- 7 True Ca mol/l in column J can be found in excell file "ICP-AES" column H.

ER20-M	Collection Date	Time (day)	XRD	B/P(18/43)	Brucite mol%	pН	CI IC (mole/l)	True Mg mole/l	True Ca mole/l
ER20-M1	2/13/2007	7			0.55	8.42		2.07E-02	1.31E-02
ER20-M2	2/13/2007	7			0.5	8.48		2.05E-02	1.25E-02
ER20-M3	3/2/2007	24	P,H		1.01	8.80	4.38	0.00E+00	0.00E+00
ER20-M4	3/2/2007	24				9.17	4.36	0.00E+00	0.00E+00
ER20-M5	3/28/2007	50	P,H		7.67	9.54	4.83	1.01E-02	1.60E-02
ER20-M6	3/28/2007	50	P,H		7.3	9.42	4.72	1.73E-02	1.63E-02
ER20-M7	5/30/2007	113	P,H,B,12	0.0606061		9.39	4.68	6.97E-03	1.41E-02
ER20-M8	5/30/2007	113				9.41	4.58	8.31E-03	1.67E-02
ER20-M9	8/23/2007	198	P,H,B,12	0.0769231		9.61	5.08	1.60E-02	1.49E-02
ER20-M10	8/23/2007	198				9.63	4.33	1.25E-02	1.51E-02
ER20-M11	12/11/2007	308	P,H,B,12	0.171875		9.53	4.69	0.00E+00	1.56E-02
ER20-M12	12/11/2007	308				9.52	4.67	0.00E+00	1.40E-02
ER20-M13	6/18/2008	498		0.2058824		9.47	0.00	6.62E-03	1.88E-02
ER20-M14	6/18/2008		P,H,B,12			9.48	4.37	6.81E-03	1,80E-02
ER3-L	Collection Date		XRD	B/P(18/43)	Brucite mol%			-	True Ca mole/l
ER3-L1	2/13/2007	7			0.86				
ER3-L2	2/13/2007		P,H		0.83	9.13	0.00		-
ER3-L3	3/2/2007	24			1.64	9.76	4.64		L
ER3-L4	3/2/2007	24				9.74	4.72	2.81E-03	
ER3-L5	3/28/2007		P,H		1.73		5.04		1.85E-02
ER3-L6	3/28/2007	50			2.02	10.40	4.95		1.94E-02
ER3-L7	5/30/2007		В,Р	0.0697674		10.98	5.00		1.685-01
ER3-L8	5/30/2007	113				10.98	5.52		1.538-01
ER3-L9	2/12/2008		P,B,H	0.15625		9.97	5.03		1.416-01
ER3-L10	2/12/2008	371				9.79	4.82	1.85E-01	1.40E-01
									0.00E+00
									0.00E+00
			1						

Page 2 of 6 Plots.xls Datasheet "Raw Data"

GW20-M	Collection Date	Time (day)	XRD	M/P(12/43)	B/P(18/43	XRD	Brucite mol%	pH	CI- IC (mole/l)	True Mg mole/l	True Ca mole/I
GW20-M1	2/13/2007	7					0.6	7.46	0.00	0.00E+00	1.18E-02
GW20-M2	2/13/2007	7		11:			0.54	7.44	0.00	0.00E+00	1.326-02
GW20-M3	3/2/2007	24	P				2.62	7.94	4.93	8.57E-01	1.116-02
GW20-M4	3/2/2007	24						7.92	5.03	8,166-01	1.06E-02
GW20-M5	3/28/2007	50					5.45	8.11	5.34	0,00E+00	1.37E-02
GW20-M6	3/28/2007	50					3.39	8.09	5.01	0,00E+00	1,37E-02
GW20-M7	5/30/2007		P					8.24	4.99	0.00E+00	1.53E-02
GW20-M8	5/30/2007	113						8.26	5.07	0.00E+00	1.41E-02
GW20-M9	8/23/2007	198	Р					8.38	5.11	1.12E+00	1.68E-02
GW20-M10	8/23/2007	198						8.39	5.01	1.13E+00	1.73E-02
GW20-M11(flack)	2/12/2008		P,H,M	0.2				8.34	5.28	1.07E+00	2.50E-02
GW20-M12	2/12/2008							8.35	5.03	1.03E+00	2,39E-02
				MEMONS	Dipitolio	VDD	Describe and IV		CI- IC (mole/l)	True Me moled	True Ca mole/l
GW20-M	Collection Date		XRD	M/P(12/43)	B/P(18/43	XKD	Brucite mol%	pH		True Mg mole/i	
GW3-S1	2/13/2007	7				100	8.81	7.85			1.97E-02
GW3-S2	2/13/2007	7	1				8.44				
GW3-S3	3/2/2007	24						8.4	3.32	7.24E-01	1.768-02
GW3-S4	3/2/2007		P,M,H	0.0857143	0		24.76		3.33	6.72E-01	1.68E-02
GW3-S5	3/19/2007		P,M	0.1060606	0			8.39		6.45E-01	1.43E-02
GW3-S6	3/19/2007	41					35.28			5.73E-01	1,52E-02
GW3-S7	3/28/2007		P,M,H,B	0.109375	0		38.42		5.47		1.58E-02
GW3-S8	3/28/2007		P,M,H	0.1206897	0	_	36.71	8.34	5.17		1.67E-02
GW3-S9(wet grou	4/16/2007		P,M	0.0882353	0			8.38			1.66E-02
GW3-S10	4/16/2007			CT =				8.37		7.18E-01	1.76E-02
GW1-S11	5/30/2007		P,B,M,H	0.1851852	0.0740741			8.35		7.25E-01	1.83E-02
GW3-S12	5/30/2007		P,B,M					8.36		7.05E-01	1.73E-02
GW3-S13	8/23/2007		P,B,M,H	0.2972973	0			8.39		8.85E-01	1.74E-02
GW3-S14	8/23/2007	198						8.4		8.85E-01	1.71E-02
GW3-S15	12/11/2007		P,B,M,H	0.1875	0.0625			8.39		8.42E-01	1.49E-02
GW3-S16	12/11/2007	308			100			8.36		8.75E-01	
GW3-S17	6/18/2008			0.0909091	0.0454545			8.3		7.90E-01	
GW3-S18	6/18/2008	498						8.39	5.03	6.53E-01	1.87E-02
		7									
						1		-			

GW20-L	Collection Date	Time (day)	XRD	M/P(12/43	B/P(18/43	XRD (Rewas	Brucite mol%	pН	CI- IC (mole/l)	True Mg mole/l	True Ca mole/I
GW20-L1	2/13/2007	7					1.05		0.00	0.00E+00	1.29E-02
GW20-L2	2/13/2007	7	P,H				1.33	7.33	0.00	0.00E+00	1.32E-02
GW20-L3	3/2/2007		P,H				1.94	7.54	5.22	0.00E+00	0.00E+00
GW20-L4	3/2/2007							7.6	9.43	0.00E+00	0.00E+00
GW20-L5	3/28/2007	50	P,H			P	0.83	7.79	5.67	0.00E+00	1.39E-02
GW20-L6	3/28/2007		P,H			P	2.14	7.78	5.66	0.00E+00	1.38E-02
GW20-L7	5/30/2007		P,H			P		8.07	5.11	0.00E+00	1,58E-02
GW20-L8	5/30/2007		P,H					8.06	5.11	0.00E+00	1.71E-02
GW20-L9	8/23/2007		P,H					8.32	4.69	1.20E+00	1.63E-02
GW20-L10	8/23/2007							8.31	5.07	1.20E+00	1.68E-02
GW20-L11	2/12/2008		P, H					8.34	4.62	1.03E+00	2.39E-02
GW20-L12	2/12/2008							8.35	4.99	1.13E+00	2.47E-02
GW3-M	Collection Date		XRD	M/P(12/43)	B/P(18/43	XRD (Rewash	Brucite mol%	pH 7.85		True Mg mole/l	True Ca mole/l
GW3-M1	2/13/2007		P				0.03	8			1,485-02
GW3-M2	2/13/2007						6.48	8.4	5.16		1.53E-01
GW3-M3	3/2/2007		P,H				0.40	8.34	5.34	7.870-01	1.85E-01
GW3-M4	3/2/2007			0.057692			5.85	8.39	4.87	8.38E-01	1.52E-02
GW3-M5	3/28/2007			0.057092			8.04	8.38	5.46	7.82E-01	1.40E-02
GW3-M6	3/28/2007			0.222222	0	P.M.B	0.04	8.39	4.86	7.61E-01	1.81E-02
GW3-M7	5/30/2007		P,M,B,H	0.222222		F,IVI,D		8.37	4.90	6.95E-01	1.62E-02
GW3-M8	5/30/2007			-				8.47	4.85	7.76E-01	1.70E-02
GW3-M9	8/23/2007			0				8.43	0.00	7.76E-01	1.72E-02
GW3-M10	8/23/2007			0.246454	0.061520			8.36	5.33	7.67E-01	1.52E-02
GW3-M11	12/11/2007		P,M,B,H	0.240134	0.061538			8.37	5.26	7.57E-01	1.56E-02
GW3-M12	12/11/2007			0.102200	0.115385		-	8.31	4.44	5.91E-01	1.86E-02
GW3-M13	6/18/2008			0.192300	0.115565			8.35	5.92	6.81E-01	2.16E-02
GW3-M14	6/18/2008	430						0.00	0.02	0.012.0	
							9 15	-1			

MgCL20-M	Collection Date	Time (day)	XRD	M/P(12/43)	B/P(18/43	XRD (Rewas	Brucite mol% pH		CI IC (mole/l)	True Mg mole/l	True Ca mole/I
MgCL20-M1	2/13/2007						10.26	8.18	0.00	0.00E+00	4.91E-03
MgCL20-M2	2/13/2007	7					11.54	8.18	0.00	0.006+00	4.54E-03
MgCL20-M3	3/2/2007	24	P,M,B,H	0.230769231	0		46.48	8.16	0.00	8.25E-01	4.75E-03
MgCL20-M4	3/2/2007	24						8.18	0.00	8.55E-01	4.84E-03
MgCL20-M5	3/19/2007	41	P,M,B,H	0.615384615	0.269230769			8.12	0.00	6.64E-01	4.84E-03
MgCL20-M6	3/19/2007	41					92.6	8.13	0.00	0.00E+00	4.87E-03
MgCL20-M7	3/28/2007		P,M,B,H	0.9	0.45		106.68	8.1	5.54	0.00E+00	5.34E-03
MgCL20-M8	3/28/2007	50					104.66	8.09	6.07	0.00E+00	5.56E-03
MgCL20-M9(soak over night)	4/16/2007		P.B.M.H	0.428571429	1.857142857			8.11	0.00	0.00E+00	5.26E-03
MgCL20-M10	4/16/2007	69			1			8.09	0.00	0.00E+00	5.88E-03
MgCL20-M11	5/30/2007		P,B,M,H	2.34375	1.71875	P,B,M,H		8.09	5.39	0.00E+00	5.24E-03
MgCL20-M12	5/30/2007	113				12444		8.13	5.55	0.00E+00	5.05E-03
MgCL20-M13	7/16/2007		P,B,M,H	2.96875	2.5			8.13	5.99	9.04E-01	1.67E-02
MgCL20-M14	7/16/2007		P,B,M,H		15.0			8.14	6.14	7.76E-01	1.69E-02
MgCl20M-15	8/23/2007	198						8.17	4.57	9.56E-01	5.48E-03
MgCl20M-16	8/23/2007		P,B,M	3.666666667	3.333333333			8.18	4.86	1.03E+00	
MgCl20M-17	12/11/2007		P,B,M,H		3.857142857			8.19	5.91	1.10E+00	
MgCl20M-18	12/11/2007	308		3.7 142037 14	0.007 142007			8.22	5.70	1,09E+00	hannes
	4/17/2008		P,B,M,H	8.25	7.875			8.17	5.32	1.09E+00	
MgCl20M19 MgCl20M20	4/17/2008	436		0.23	7.073			8.16	5.20	1.08E+00	L
INIGCIZUNIZU	4/1//2000	450	1					0,10	0.20	11002 00	51100 00
MgCL3-S	Collection Date		XRD	M/P(12/43)	B/P(18/43	XRD (Rewast	Brucite mol% pH			True Mg mole/l	
MgCL3-S1	2/13/2007	7				-	33.52	8.32	0.00	0.00E+00	3.07E-02
MgCL3-S2	2/13/2007	7					32.88	8.31	0.00	0.00E+00	3.16E-02
MgCL3-S3	3/2/2007	24	P,M,B,H	0.294117647	0.176470588	P,B		8.34	5.65	0.00E+00	3.43E-02
MgCL3-S4	3/2/2007	24				1		8.35	0.00	5.95E-01	3.50E-02
MgCL3-S5	3/19/2007	41	P,M,B,H	0.433333333	0.333333333			8.24	5.74	4.57E-01	3.60E-02
MgCL3-S6	3/19/2007	41						8.24	0.00	3.61E-01	3.60E-02
MgCL3-S7	3/28/2007	50	P,M,B,H	0.5	0.464285714			8.25	5.32	0.00E+00	3.94E-02
MgCL3-S8	3/28/2007	50						8.25	5.17	0.00E+00	4.05E-02
MgCL3-S9 (wet ground)	4/16/2007	69	P,M, B	0.3125	0.53125			8.23	0.00	0.00E+00	4.33E-02
MgCL3-S10	4/16/2007	69					90.1	8.23	0.00	0.00E+00	5.01E-02
MgCL3-S11	5/30/2007	113	P,B,M,H	0.636363636	0.909090909			8.21	5.20	0.00E+00	4.55E-02
MgCl3-S12	5/30/2007	113						8.21	5.18	0.00E+00	4.70E-02
MgCL3-S13	7/16/2007	160						8.32	5.65	5.68E-01	6.63E-02
MgCL3-S14	7/16/2007	160	P,B,M,H	1	1.272727273			8.26	5.81	5.87E-01	6,40E-02
MgCl3-S15	8/23/2007		P,B,M,H	1.6	2.4			8.28	5.51	7.57E-01	5.39E-02
MgCl3-S16	8/23/2007	198						8.28	5.22	7.52E-01	5.31E-02
MgCl3-S17	12/11/2007	308	P,M,B,H	2.928571429	3.928571429			7.99	5.54	7.48E-01	5.02E-02
MgCl3-S18	12/11/2007	308				1		8.01	5.64	7.85E-01	5.70E-03
MgCl3-S19	4/17/2008		P,M,B,H	2.625	7.625			8.16	5.36	8.56E-01	5.13E-02
MgCl3-S20	4/17/2008	436						8.19	5.40	8,09E-01	4.73E-02
				-		-		0.44	5.48		5.97E-02
MgCl3-S21	6/18/2008	498						8.14	3.40	7.105-01	J. (712-02)

MgCL20-L	Collection Date	Time	(XRD	M/P(12/	B/P(1	XRD (Rewash)		Brucite mol%	рН	CI IC (mole/l)	True Mg mole/l	True Ca mole/I
MgCL20-L1	2/13/2007	7								4.2	8.21	0.00	0.00E+00	4.50E-03
MgCL20-L2	2/13/2007	7							1	4.24	8.25	0.00	0.00E+00	6.57E-03
MgCL20-L3	3/2/2007	24	P,M,H	0.16	0.02	Р					8.11	0.00	8.71E-01	4.67E-03
MgCL20-L4	3/2/2007	24									8.17	0.00	8.74E-01	4.47E-03
MgCL20-L5	3/19/2007	41	P,B,M.H	0.4444	0.33	Blur r	70C,3h	r			8.12	0.00	7.68E-01	4.55E-03
MgCL20-L6	3/19/2007	41	P,H								8.09	0.00	6.78E-01	4.59E-03
MgCL20-L7	3/28/2007	50	P,B,M.H	0.6429	0.57	metha	nol			76.59	8.12	5.47	0.00E+00	5.50E-03
MgCL20-L8	3/28/2007	50	P,B,M.H	0.64	0.68	P,B,N	1			76.64	8.14	5.19	0.00E+00	4.96E-03
MgCL20-L9(wet gr	4/16/2007	69	P,B,M	1	1.7						8.11	0.00	0.00E+00	5.16E-03
MgCL20-L10	4/16/2007	69							1		8.08	0.00	0.00E+00	5.25E-03
MgCL20-L11	5/30/2007	113	P,M,B,H	0.8462	1.77						8.09	5.62	0.00E+00	5.38E-03
MgCL20-L12	5/30/2007	113						11 1			8.11	5.28	0.00E+00	5,30E-03
MgCL20-L13	7/16/2007	160	P,B,M,H	2.75	3.25	1 1	-	1 - 1			8.12	5.94	9.32E-01	1,69E-02
MgCL20-L14	7/16/2007	160	P,B,M,H								8.07	5.94	8,85E-01	1.71E-02
MgCL20-L15	8/23/2007	198	P,B,M,H	3.1667	3.67	1 1					8.15	5.27	1.24E+00	5.97E-03
MgCL20-L16	8/23/2007	198									8.14	5.31	1.16E+00	6.34E-03
MgCL20-L17	12/11/2007	308	P,B,M,H	7.2	6.8			7 - 1			7.99	5.58	1.12E+00	5.97E-03
MgCL20-L18	12/11/2007	308									8.01	5.65	1.12E+00	5.285-03
MgCL20-L19	4/17/2008	436	P,M,B,H	6.25	7.13		1			-	8.15	5.35	1.15E+00	6.21E-03
MgCL20-L20	4/17/2008	436									8.16	5.51	1.14E+00	5.82E-03
MgCL3-M	Collection Date		XRD	M/P(12/	B/P(1)	XRD (Rewash	M/P(1:	B/P(1	Brucite mol%	pН	CI IC (mole/l)	True Mg mole/l	True Ca mole/I
MgCL3-M1	2/13/2007	7		1111	J					3.14	8.25	0.00	0.00E+00	3.18E-02
MgCL3-M2	2/13/2007	7								4.09	8.24	0.00	0.00E+00	3.185-02
MgCL3-M3	3/2/2007		P,M,H	0.1429	0	Р	3hr, 70	0.088	0	37.09	8.28	5.57	7.13E-01	3.21E-02
MgCL3-M4	3/2/2007	24	T project					-			8.29	0.00	7.43E-01	3.18E-02
MgCL3-M5	3/19/2007		P.B.M.H	0.2564	0.31						8.18	0.00	5.24E-0)	3.49E-02
MgCL3-M6	3/19/2007	41	, 10,111,11	1						60.8	8.17	0.00	5.01E-01	3.38E-02
MgCL3-M7	3/28/2007	50				P.B.M	methno	0.313	0.57	71.16	8.2	5.21	0.00E+00	4.09E-02
MgCL3-M8	3/28/2007	50	P.B.M.H	0.4545	0.48		70C. 0		0.53	74.49	8.17	5.16	0.00E+00	4.21E-02
MgCL3-M9	4/16/2007		P,B,M,H	1	1.7	P.B.M	wet gro	1	1.7		8.16	0.00	6,95E-01	4.75E-02
MgCL3-M10	4/16/2007	69					-		V 1	100	8.16	0.00	6,34E-01	4.27E-02
MgCL3-M11	5/30/2007	113	P,B,M,H	0.4706	1.29		7				8.16	5.25	6.54E-01	4.75E-02
MgCL3-M12	5/30/2007	113		-	-						8.16	5.45	6.87E-01	5.04E-02
MgCL3-M13	7/16/2007	160									8.26	9.78	6.72E-01	6.03E-02
MgCL3-M14	7/16/2007		P,B,M,H	1.0667	1.6						8.21	5.87	6.62E-01	6.40E-02
			P,B,M,H	1.7273	2.18						8.26	5.47	8.47E-01	5.02E-02
MaCL3-M15	8/23/2007	130				_					8.26	5.34	8.61E-01	5,34E-02
MgCL3-M15 MgCL3-M16	8/23/2007 8/23/2007	198												
MgCL3-M16	8/23/2007	198								7-	8.19	5.47	8,47E-01	4.92E-02
MgCL3-M16 MgCL3-M17	8/23/2007 12/11/2007	198		2.95	4.2						8.19	5.47 5.43	8.47E-01 8.23E-01	4.92E-02 4.82E-02
MgCL3-M16 MgCL3-M17 MgCL3-M18	8/23/2007 12/11/2007 12/11/2007	198 308 308	P,B,M,H	2.95	-				Į.					
MgCL3-M16 MgCL3-M17 MgCL3-M18 MgCl3-M19	8/23/2007 12/11/2007 12/11/2007 4/17/2008	198 308 308 436	P,B,M,H P,M,B,H	10000	4.35						8.22	5.43 5.39	8.23E-01	4.82E-02
MgCL3-M16 MgCL3-M17 MgCL3-M18	8/23/2007 12/11/2007 12/11/2007	198 308 308 436 436	P,B,M,H	10000	4.35 4.13						8.22 8.16	5.43 5.39	8.23E-01 9.13E-01	4,82E-02 5.05E-02

		Γ		Log (molarity to	molarity to	H+ log	A (pH correction		Τ	1			Τ	1			1
1				molality) 0.049857161	molality 1.121649485	gamma 0.7569	factor) 1.155		Cl- log gamma -0.2666		Mg++ log gamma 0.5634		0.788847		Brucite log k 17,1090	Phase 5 log k 43,1900	Phase 3 log k 26,0297
									CI-	Cl-	Mg++	Mg++	Ca++	Ca			
									concentration	concentration	concentration	concentration	concentration	concentratio			
2/6/2007	Collection Date	Time (days)	Not Used	Not Used	Not Used	pН	рсН	pmH	(mol/l)	(mol/kg)	(mol/l)	(mol/kg)	(mol/l)	n (mol/kg)	SI (brucite)	SI (phase5)	SI (phase 3)
ER20-S1 ER20-S2	2/13/2007 2/13/2007	7 7	NA NA	NA NA	NA NA	8.67 8.56	9.83. 9.72	9.78 9.67	NA NA		2.29E-02 2.15E-02	2.57E-02 2.42E-02	1.66E-02 1.13E-02	1.87E-02 1.27E-02	-0.31 -0.55		
ER20-S3	3/2/2007	24	NA NA	NA NA	NA NA	8.98	10.14	10.09	NA NA		2.13E-02 NA	2.42E-02	NA	1.2/E-02	-0,33		
ER20-S4	3/2/2007	24	NA	NA	NA NA	8.96	10.12	10.07	NA		NA		NA				
ER20-S5	3/19/2007	41	NA	NA	NA	9.35	10,51	10,46	NA		1.46E-02	1.64E-02	8.33E-03	9.34E-03	0.86		
ER20-S6 ER20-S7	3/19/2007 3/28/2007	41 50	NA NA	NA NA	NA NA	9.28 9.39	10.44 10.55	10.39	NA 4.54	5.10	1.37E-02 1.76E-02	1.53E-02 1.97E-02	7.86E-03 1.12E-02	8.82E-03 1.26E-02	0.69 1.02	1,59	0.62
ER20-S8	3/28/2007	50	NA NA	NA NA	NA NA	9.40	10.55	10.50	4.34	4.87	1.60E-02	1.97E-02 1.80E-02	1.12E-02 1.12E-02	1.26E-02	1.02	1.50	0.55
ER20-S9	4/16/2007	69	NA NA	NA NA	NA NA	9,42	10.58	10.53	NA NA	7.07	NA	1.002-02	NA	1.202-02	1.00	1.50	0.55
ER20-S10	4/16/2007	69	NA	NA	NA	9.36	10.52	10.47	NA		NA		NA				
ER20-S11	5/30/2007	113	NA NA	NA	NA NA	9.37	10.53	10.48	4.51	5.06	NA		NA NA	ļ			
ER20-S12 ER20S13	5/30/2007 8/23/2007	113 198	NA NA	NA NA	NA NA	9.34 9.40	10.50 10.56	10.45 10.51	4.48 4.54	5.03 5.09	NA 9.89E-02	1.11E-01	NA 1.18E-02	1.32E-02	1.79	3.89	2.15
ER20S14	8/23/2007	198	NA NA	NA NA	NA NA	9,49	10.65	10.60	4.12	4.63	8.42E-02	9.45E-02	1.28E-02	1.44E-02	1.90	4.09	2.24
ER20S15	12/11/2007	308	NA	NA	NA	9.45	10.61	10.56	4.67	5.24	NA		1.22E-02	1.37E-02			
5114V51)	12/11/2007	308	NA	NA	NA	9.42	10.58	10.53	4.71	5.29	ŅĀ		1.21E-02	1.36E-02			
FR20318	6/18/2008 6/18/2008	498 498	NA NA	NA NA	NA NA	9.33 9.40	10.49 10.56	10.44	4.41 4.37	4.95 4.90	1,17E-02 1,28E-02	1.31E-02 1.44E-02	1.45E-02 1.52E-02	1.63E-02 1.70E-02	0.72	0.74	0.07
318	0/16/2008	470	NA	NA.	- NA	9.40	10.30	10,51	4.37	4,90	1,28E-02	1,44E-02	1.32E-02	1.70E=02	0.90	1.21	0.30
							1										
]	H+ log	Ī		1				1				
						gamma			Cl- log gamma		Mg++ log ganuma		aw .				
H = H						0.7524			-0.2664		0.5502		0.788766	-			ļ
									Cl	Cı			1	Ca			
									concentration	concentration	Mg concentration	Mg concentration					
ER3 M	Collection Date	Time (days)	Not Used	Not Used	Not Used	pН	рсН	pmH	(mol/l)	(mol/kg)	(mol/l)	(mol/kg)	(mol/l)	n (mol/kg)	SI (brucite)	SI (phase5)	SI (phase 3)
ER3-M1	2/13/2007 2/13/2007	7	NA NA	NA NA	NA NA	9.16 9.13	10.32	10.27	0.00	0.00	1.47E-02 1.39E-02	1.65E-02 1.55E-02	1.60E-02 1.65E-02	1.79E-02 1.85E-02	0.48		
GN3-M3	3/2/2007	24	NA NA	NA NA	NA NA	9.76	10.23	10.24	2.21	2.47	7.56E-03	8.48E-03	1.53E-02	1.72E-02	1.39	2.01	0.67
14	3/2/2007	24	NA	NA NA	NA	9.74	10.90	10.85	4.81	5.39	5.97E-03	6.69E-03	1.53E-02	1.72E-02	1.25	1.94	0,69
EB3-M5	3/28/2007	50	NA	NA	NA	10.40	11.56	11.51	5,04	5.65	NA		1.70E-02	1.90E-02			
ER3-M6 ER3-M7	3/28/2007 5/30/2007	50 113	NA NA	NA NA	NA NA	10.40 11.06	11.56 12.22	11.51 12.17	5.00 4.46	5.60	NA NA		1.76E-02 1.63E-02	1.98E-02 1.83E-02			
EK3-M7	5/30/2007	113	NA NA	NA NA	NA NA	11.11	12.27	12.17	4.40	4.93	NA NA		1.64E-02	1.83E-02 1.84E-02			
М9	2/12/2008	371	NA	NA	NA	10.88	12.04	11.99	4.52	5.07	NA		2.10E-02	2.36E-02			
110	2/12/2008	371	NA	NA	NA	9.41	10.57	10.52	5.06	5.67	NA		9.08E-03	1.02E-02			ļ
													-			-	
-																	
																	
											-						
				-			 										l
							-										
			i	1													
					-												

Constants: Molarity to molality conversion factor for ERDA-6 in cell F5 = Concentration of Na+ (mol/L) /Concentration of Na+ (mol/kg) = 5.44/4.85 The molar and molal Na+ concentrations are given in SP20-4 Appendix B For the H+ log gamma in cell G5 and cell G29 see the explanation section of worksheet "Fig 33" of this Excel file. The pH correction factor A in cell H5 can be found in Excel file " Brine acid base titration", worksheet "sum" For the CI- log gamma in J5/29 see the explanation section of worksheet "Fig 33" of this Excel file. For the Mg++ log gamma in cells L5/29 see the explanation section of worksheet "Fig 33" of this Excel file. For the activity of water (aw) in N5/29 see the explanation section of worksheet "Fig 33" of this Excel file. Log k for brucite in cell P5 = 17.1090 Log k for phase-5 in cell Q5 = 43.19L:og k for phase-3 in cell R5 = 26.0297These Log K's can be found in the EQ3/6 database: data0.hmo, and in the memo: Xiong et al., 2009 Calculations Time in column C = collection date in column B - starting date in cell A6 (data in column B and cell A6 can be found in WIPP-MMMgO-5, p60-71) Column D, E, F are not used pH in column G can be found in notebook WIPP-MMMgO-5, p60-71. pcH in column H = pH in column G + A (pH correction factor) in Cell H5 pmH in column I = pcH in column H + log (molarity to molality conversion factor in Cell F5) Cl concentration (mole/l) in column J can be found in Excel file "Cl analysis", column D. C1 concentration (mol/kg) in column K = C1 concentration (mol/l) in column J x molar conversion factor in cell F5 Mg concentration (mol/l) in column L can be found in excel file "ICP-AES" column G. Mg concentration (mol/kg) in column M = Mg concentration (mol/l) in column L x molar conversion factor in cell F5 Ca concentration (mol/l) in column N can be found in excel file "ICP-AES" column H. Ca concentration (mol/kg) in column O = Ca concentration (mol/l) in column N x molar conversion factor in cell F5 SI of brucite in column P, see subsection 4.2 of the report "=log (Mg concentration in column M) + Mg log gamma in cell L5/29 + 2 pmH in column I- 2 H log gamma in cell G5/29 + 2 log aw in cell N5 - log k of brucite in cell P5 SI of phase-5 in column Q, see subsection 4.2 of report "=3 log (Mg concentration mol/kg in column M)+ 3 Mg log gamma in cell L5/29 + 5 pmH in column I "- 5 H log gamma in cell G5/29+ 9 log Aw in cell N5/29" "+ log (Cl concentration in column K) + Cl log gamma in cell J5/29 - log k of phase-5 in cell Q5" SI of phase-3 in column O, see subsection 4.2 of report "=2 log (Mg concentration in column M)+ 2 Mg log gamma in cell L5/29 + 3 pmH in column I "- 3 H log gamma in cell G5/29+ 7 log aw in cell N5/29" "+ log (Cl concentration in column K) + Cl log gamma in cell J5/29 -log k of phase-3 in cell R5"

							I	r	Τ		T					T	Γ
EB20 M	Callesting Date	Time (days)	Not Used	Not Used	Not Used	рН	рсН	pmH	Cl concentration	Cl concentration (mol/kg)	Mg concentration (mol/l)	Mg concentration (mol/kg)	Ca concentration (mol/l)	Ca concentration (mol/kg)	SI (brucite)	SI (nhaces)	SI (phase 3)
ER20-M	Collection Date	Time (days)								(moi/kg)						Si (pilases)	31 (phase 3)
ER20-M1	2/13/2007	7	NA	NA	NA	8.42	9.58	9.53	NA		2.07E-02	2.33E-02	1.31E-02 1.25E-02	1.46E-02 1.40E-02	-0.85 -0.73	 	
ER20-M2	2/13/2007	7 24	NA	NA NA	NA NA	8,48 8,80	9.64 9.96	9.59 9.91	NA 4.38	4.91	2.05E-02 NA	2.30E-02	1.23E-02 NA	1.40E-02	-0,73	-	
ER20-M3 ER20-M4	3/2/2007 3/2/2007	24	NA NA	NA NA	NA NA	9.17	10.33	10.28	4.36	4.88	NA NA		NA NA			 	
ER20-M5	3/28/2007	50	NA NA	NA NA	NA NA	9.17	10.33	10.28	4.83	5.42	1.01E-02	1.13E-02	1.60E-02	1.80E-02	1.08	1.64	0.56
ER20-M6	3/28/2007	50	NA NA	NA NA	NA NA	9.42	10.78	10.53	4.72	5.30	1.73E-02	1.94E-02	1.63E-02	1.82E-02	1.07	1.73	0.66
ER20-M6	5/30/2007	113	NA NA	NA NA	NA NA	9.39	10.55	10.50	4.68	5.24	6.97E-03	7.82E-03	1.41E-02	1.58E-02	0.62	0.40	-0.22
ER20-M8	5/30/2007	113	NA NA	NA NA	NA.	9.41	10.57	10.52	4.58	5.14	8.31E-03	9.32E-03	1.67E-02	1.87E-02	0.73	0.72	-0.02
ER20-M9	8/23/2007	198	NA	NA	NA	9.61	10.77	10.72	5.08	5.70	1.60E-02	1.80E-02	1.49E-02	1.68E-02	1.42	2.62	1.20
ER20-M10	8/23/2007	198	NA	NA	NA	9.63	10.79	10.74	4.33	4.85	1.25E-02	1.41E-02	1.51E-02	1.70E-02	1.35	2.33	0.98
ER20-M11	12/11/2007	308	NA	NA	NA	9.53	10.69	10.64	4.69	5.26	NA		1.56E-02	1.75E-02			
ER20-M12	12/11/2007	308	NA	NA	NA	9.52	10.68	10.63	4.67	5.24	NA		1.40E-02	1.57E-02			
ER20-M13	6/18/2008	498	NA	NA	NA	9.47	10.63	10,58	NA		6.62E-03	7.43E-03	1.88E-02	2.10E-02	0.76		
ER20-M14	6/18/2008	498	NA	NA	NA	9,48	10,64	10.59	4.37	4.90	6.81E-03	7.64E-03	1.80E-02	2.02E-02	0.79	0.79	0.00
		I														ļ	
		<u> </u>											_,				
		ļ								,							
			L													·	
			ļ	ļ					ļ							ļ <u>.</u>	
			L													ļ	
																1	
]	
		····	r						ļ							<u> </u>	
									· ·								1
		1						•	Cleoncentration	CI concentration	Mg concentration	Mg concentration	Ca concentration	Ca concentration			i
ER3-L	Collection Date	Time (days)	Not Used	Not Used	Not Used	pН	рсН	pmH	(mol/l)	(mol/kg)	(mol/l)	(mol/kg)	(mol/l)	(mol/kg)	SI (brucite)	SI (phase5)	SI (phase 3)
ER3-L1	2/13/2007	7	NA.	NA NA	NA NA	9.16	10.32	11.47	0.00	0.00	8.00E-02	8.97E-02	2.15E-02	2.41E-02	1.21	Q	4- 4
iR3-L1	2/13/2007	7	NA NA	NA NA	NA NA	9.13	10.32	11.44	0,00	0.00	1.97E-02	2.22E-02	2.08E-02	2.33E-02	0.55		
ER3-L3	3/2/2007	24	NA NA	NA NA	NA NA	9.76	10.29	12.07	4.64	5.20	2.89E-03	3.25E-03	1,97E-02	2.21E-02	0.97	1.08	0.11
23-L4	3/2/2007	24	NA NA	NA NA	NA NA	9.74	10.90	12.05	4.72	5.29	2.81E-03	3.15E-03	1,95E-02	2.19E-02	0.92	0.95	0.03
5R3-L5	3/28/2007	50	NA NA	NA NA	NA NA	10.40	11.56	12.71	5.04	5.65	NA NA	5.152 05	1.85E-02	2.07E-02	0.52	0.52	1
ER3-L6	3/28/2007	50	NA.	NA NA	NA.	10.40	11.56	12.71	4.95	5,55	NA		1,94E-02	2.17E-02			T
ER3-L7	5/30/2007	113	NA.	NA NA	NA.	10.98	12.14	13.29	5.00	5,61	NA		1.68E-01	1.88E-01		1	
ER3-L8	5/30/2007	113	NA	NA	NA	10.98	12.14	13.29	5.52	6,19	NA		1.53E-01	1.72E-01			
ER3-L9	2/12/2008	371	NA	NA	NA	9.97	11,13	12.28	5.03	5.65	1.90E-01	2.13E-01	1.41E-01	1.58E-01	3.21	7.62	4.41
R3-L10	2/12/2008	371	NA	NA	NA	9.79	10,95	12.10	4.82	5.40	1.85E-01	2.08E-01	1.40E-01	1.57E-01	2.84	6.67	3.83
															L		ļ
		L														ļ	
									ļ							↓	ļ
			ļ						↓							↓	.
		ļ		L									,			_	
			ļ	↓												 	
		-	<u> </u>								<u> </u>					 	
_		-	ļ	 				-	ł							!	
-	, .	1	 	 					<u> </u>								
		 	 	 				<u> </u>	 		 					 	
		-							 		 					 	
		 	 	 			-		 								<u> </u>

Plots.xis

Patasheet "Calculated molali

														I							
	 							 _													
																				-	
																			_	 	
											_										
				-									_								
									 								_				
		_																			
								-							<u> </u>						
																			_		

							molarity to	T	A (pH	1					T	T			
							molality	H+ log gamma	correction		Cl- log gamma		Mg++ log gamma		aw		Brucite log k	Phase 5 log k	Phase 3 log k
1							1.1275	1.1131	1.224		-0.2758		1.1781		0.720915		17.1090	43.1900	26.0297
										1							-		
								'		Ì					Ca	Ca			
C11/20 14	Collection	T (4.)	N	N1.4 T1.43	NUMBER	37.4773	NT 271						Mg concentration			concentration	CI dimension	CY (-b 5)	CI (-1 2)
GW20-M	Date	Time (day)		Not Used	Not Used	Not Used	Not Used	pН	рсН	pmH	(mol/l)	(mol/kg)	(mol/l)	(mol/kg)	(mol/l)	(mol/kg)	SI (brucite)	SI (phase-5)	SI (phase-3)
GW20-M1 GW20-M2	2/13/2007	7	NA	NA NA	NA NA	NA.	NA NA	7.46	8.68	8.63	NA NA		NA NA		0.01	0.01			
GW20-M2 GW20-M3	2/13/2007 3/2/2007	7 24	NA NA	NA NA	NA NA	NA NA	NA NA	7.44 7.94	8.66 9.16	8.61 9.11	4.93	5.55	0.86	0.97	0.01	0.01	-0.23	-0.52	-0.29
GW20-M3	3/2/2007	24	NA NA	NA NA	NA NA	NA NA	NA NA	7.92	9.14	9.09	5.03	5.67	0.82	0.92	0.01	0.01	-0.29	-0.67	-0.29
GW20-M5	3/28/2007	50	NA	NA	NA.	NA NA	NA.	8.11	9.33	9.28	5.34	6.02	NA NA	0.52	0.01	0.02		10.01	-0,50
GW20-M6	3/28/2007	50	NA NA	NA	NA NA	NA NA	NA.	8.09	9.31	9.26	5.01	5,65	NA NA		0.01	0.02		1	
GW20-M7	5/30/2007	113	NA	NA	NA	NA	NA	8.24	9.46	9.41	4.99	5.63	NA		0.02	0.02			
GW20-M8	5/30/2007	113	NA	NA	NA	NA	NA	8.26	9.48	9.43	5.07	5.71	NA		0.01	0.02			
GW20-M9	8/23/2007	198	NA	NA	NA	NA	NA	8.38	9.60	9.55	5.11	5.76	1.12	1.26	0.02	0.02	0.76	2.04	1.28
GW20-M10	8/23/2007	198	NA	NA	NA	NA	NA	8.39	9.61	9.56	5.01	5.65	1.13	1.27	0.02	0.02	0.79	2.09	1.31
GW20-M11 (flake)	2/12/2008	371	NA	NA	NA	NA	NA	8.34	9.56	9.51	5.28	5.95	1.07	1.21	0,03	0.03	0.66	1.80	1.14
GW20-M12	2/12/2008	371	NA	NA	NA	NA	NA	8.35	9.57	9.52	5.03	5.67	1.03	1.16	0.02	0.03	0.67	1.78	1.11
-																			
															-				
										ļ								ļ	
								 		ļ	ļi		-						
					 						 								
					-													<u> </u>	
								H+ log			1								
			- 1					gomma			Ci- log gamma		Mg++ log gamma		aw				
3			I					1.0171			-0.2741		0.9926		0.737546				١ '

								1 1											
	Collection							1 1				1			Ca	Ca			
GW3S	Date		1									Cl concentration			concentration	concentration			
GW3-S1		Time (days)		Not Used	Not Used	Not Used	Not Used	рН	рсН	pmH	Cl concentration (mol/l)	Cl concentration (mol/kg)	(mol/l)	Mg concentration (mol/kg)			SI (brucite)	SI (phase-5)	SI (phase-3)
GW3-S2	2/13/2007	7	NA	NA	NA	NA	NA	7.85	9.07	9.02	(mol/l) NA		(mol/l) NA		concentration (mol/l) 0.02	concentration	SI (brucite)	SI (phase-5)	SI (phase-3)
	2/13/2007	7	NA NA	NA NA	NA NA	NA NA	NA NA	7.85 8.00	9.07 9.22	9.02 9.17	(mol/l) NA NA	(mol/kg)	(mol/l) NA NA	(mol/kg)	concentration (mol/l) 0.02 NA	concentration (mol/kg) 0.02		•	
GW3-S3	2/13/2007 3/2/2007	7 7 24	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	7.85 8.00 8.40	9.07 9.22 9.62	9.02 9.17 9.57	(mol/l) NA NA 3,32	(mol/kg) 3,74	(mol/l) NA NA 0,72	(mol/kg) 0.82	concentration (mol/l) 0.02 NA 0.02	concentration (mol/kg) 0.02	0.64	1.40	0.76
GW3-S3 JW3-S4	2/13/2007 3/2/2007 3/2/2007	7 7 24 24	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	7.85 8.00 8.40 8.34	9.07 9.22 9.62 9.56	9.02 9.17 9.57 9.51	(mol/l) NA NA 3,32 3,33	(mol/kg)	(mol/l) NA NA 0.72 0.67	0.82 0.76	concentration (mol/l) 0.02 NA 0.02 0.02	0.02 0.02	0.64 0.49	•	
GW3-S3 JW3-S4 3"'/3-S5	2/13/2007 3/2/2007 3/2/2007 3/19/2007	7 7 24 24 41	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	7.85 8.00 8.40 8.34 8.39	9.07 9.22 9.62 9.56 9.61	9.02 9.17 9.57 9.51 9.56	(mol/l) NA NA 3,32 3,33 NA	(mol/kg) 3,74	(mol/l) NA NA 0.72 0.67 0.64	0.82 0.76 0.73	concentration (mol/l) 0.02 NA 0.02 0.02 0.01	concentration (mol/kg) 0.02 0.02 0.02 0.02	0.64 0.49 0.57	1.40	0.76
GW3-S3 JW3-S4 GW3-S5 GW3-S6	2/13/2007 3/2/2007 3/2/2007 3/19/2007 3/19/2007	7 7 24 24 41 41	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	7.85 8.00 8.40 8.34 8.39 8.38	9.07 9.22 9.62 9.56 9.61 9.60	9.02 9.17 9.57 9.51 9.56 9.55	(mol/l) NA NA 3,32 3.33 NA NA	3,74 3,75	(mol/I) NA NA 0.72 0.67 0.64 0.57	0.82 0.76	concentration (mol/l) 0.02 NA 0.02 0.02 0.01 0.02	0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02	0.64 0.49	1.40	0.76
GW3-S3 JW3-S4 GW3-S5 GW3-S6 GW3-S7	2/13/2007 3/2/2007 3/2/2007 3/19/2007 3/19/2007 3/28/2007	7 7 24 24 41 41 50	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	7.85 8.00 8.40 8.34 8.39 8.38 8.34	9.07 9.22 9.62 9.56 9.61 9.60 9.56	9.02 9.17 9.57 9.51 9.56 9.55 9.51	(mol/l) NA NA 3,32 3.33 NA NA 5.47	3,74 3,75 6,17	(mol/l) NA NA 0.72 0.67 0.64 0.57 NA	0.82 0.76 0.73	concentration (mol/l) 0.02 NA 0.02 0.02 0.01 0.02 0.01	0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02	0.64 0.49 0.57	1.40	0.76
GW3-S3 JW3-S4 GW3-S5 GW3-S6 GW3-S7 GW3-S8	2/13/2007 3/2/2007 3/2/2007 3/19/2007 3/19/2007 3/28/2007 3/28/2007	7 7 24 24 41 41 50	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA	NA	NA	7.85 8.00 8.40 8.34 8.39 8.38 8.34 8.34	9.07 9.22 9.62 9.56 9.61 9.60 9.56 9.56	9.02 9.17 9.57 9.51 9.56 9.55 9.51 9.51	(mol/l) NA NA 3.32 3.33 NA NA 5.47 5.17	3,74 3,75	(mol/l) NA NA 0.72 0.67 0.64 0.57 NA NA	0.82 0.76 0.73	concentration (mol/l) 0.02 NA 0.02 0.02 0.01 0.02 0.01 0.02 0.02 0.02	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.64 0.49 0.57	1.40	0.76
GW3-S3 JW3-S4 GW3-S5 GW3-S6 GW3-S7	2/13/2007 3/2/2007 3/2/2007 3/19/2007 3/19/2007 3/28/2007	7 7 24 24 41 41 50 50	NA NA NA NA NA NA NA NA	NA	NA NA NA NA NA NA	NA N	NA NA NA NA NA NA	7.85 8.00 8.40 8.34 8.39 8.38 8.34	9.07 9.22 9.62 9.56 9.61 9.60 9.56	9.02 9.17 9.57 9.51 9.56 9.55 9.51	(mol/l) NA NA 3,32 3.33 NA NA 5.47	3,74 3,75 6,17	(mol/l) NA NA 0.72 0.67 0.64 0.57 NA	0.82 0.76 0.73	concentration (mol/l) 0.02 NA 0.02 0.02 0.01 0.02 0.01	0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02	0.64 0.49 0.57	1.40	0.76
GW3-S3 JW3-S4 3"3-S5 GW3-S6 JW3-S7 GW3-S8 Gw3-S9 (wet ground)	2/13/2007 3/2/2007 3/2/2007 3/19/2007 3/19/2007 3/28/2007 3/28/2007 4/16/2007	7 7 24 24 41 41 50	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA	NA	NA	NA	7.85 8.00 8.40 8.34 8.39 8.38 8.34 8.34 8.34	9.07 9.22 9.62 9.56 9.61 9.60 9.56 9.56 9.56	9.02 9.17 9.57 9.51 9.56 9.55 9.51 9.51 9.55 9.54 9.52	(mol/l) NA NA NA 3.32 3.33 NA NA NA NA NA 5.47 5.17 NA NA S,26	3.74 3.75 6.17 5.83	(mol/l) NA NA NA 0.72 0.67 0.64 0.57 NA NA 0.72 0.72	0.82 0.76 0.73 0.65	concentration (mol/1) 0.02 NA 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02	concentration (mol/kg) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.64 0.49 0.57 0.50 0.58	1.40	0.76
GW3-S3 JW3-S4 D''3-S5 GW3-S6 GW3-S7 GW3-S9 Gw3-S9 (we ground) JW3-S10 GW3-S11	2/13/2007 3/2/2007 3/2/2007 3/19/2007 3/19/2007 3/28/2007 4/16/2007 4/16/2007	7 7 7 24 24 41 41 50 50 69	NA	NA	NA	NA N	NA	7.85 8.00 8.40 8.34 8.39 8.38 8.34 8.34 8.34 8.34 8.38	9.07 9.22 9.62 9.56 9.61 9.56 9.56 9.56 9.56 9.59	9.02 9.17 9.57 9.51 9.56 9.55 9.51 9.51 9.55 9.54 9.52 9.53	(mol/l) NA NA 3.32 3.33 NA NA S.47 5.17 NA NA	(mol/kg) 3.74 3.75 6.17 5.83 5.93 5.80	(mol/l) NA NA 0.72 0.67 0.64 0.57 NA NA NA O.72 0.72	0.82 0.76 0.73 0.65	concentration (mol/l) 0.02 NA 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02	concentration (mol/kg) 0,02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.64 0.49 0.57 0.50	1.40	0.76 0.52
GW3-S3 JW3-S4 T'3-S5 GW3-S6 GW3-S6 GW3-S9 (wet ground) JW3-S10 GW3-S11 GW3-S12 GW3-S12 GW3-S13	2/13/2007 3/2/2007 3/2/2007 3/19/2007 3/19/2007 3/28/2007 4/16/2007 4/16/2007 4/16/2007 5/30/2007 8/23/2007	7 7 24 24 41 41 50 50 69 69 69 69 113 113	NA N	NA N	NA N	NA NA NA NA NA NA NA NA NA NA NA	NA N	7.85 8.00 8.40 8.34 8.39 8.38 8.34 8.34 8.38 8.37 8.35 8.35 8.36 8.39	9.07 9.22 9.62 9.56 9.61 9.56 9.56 9.56 9.56 9.59 9.57 9.58 9.61	9.02 9.17 9.57 9.51 9.56 9.55 9.51 9.51 9.55 9.54 9.52 9.53 9.56	(mol/l) NA NA NA 3.32 3.33 NA NA 5.47 5.17 NA NA 5.26 5.15	(moUkg) 3.74 3.75 6.17 5.83 5.93 5.80 5.47	(mol/l) NA NA 0.72 0.67 0.64 0.57 NA NA NA 0.72 0.72 0.72 0.72 0.71 0.88	0.82 0.76 0.73 0.65	concentration (mol/1) 0.02 NA 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	concentration (mol/kg) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.64 0.49 0.57 0.50 0.58	1.40	0.76 0.52 0.81
GW3-S3 JW3-S4 D''3-S5 GW3-S6 GW3-S7 GW3-S9 (web ground) JW3-S10 GW3-S11 "W3-S12 GW3-S13	2/13/2007 3/2/2007 3/2/2007 3/19/2007 3/19/2007 3/28/2007 3/28/2007 4/16/2007 5/30/2007 5/30/2007 8/23/2007 8/23/2007	7 7 24 24 41 41 50 50 69 69 113 113 198	NA N	NA N	NA N	NA	NA N	7.85 8.00 8.34 8.39 8.38 8.34 8.34 8.33 8.35 8.35 8.35 8.36 8.39	9.07 9.22 9.62 9.56 9.61 9.60 9.56 9.59 9.57 9.58 9.61 9.61	9.02 9.17 9.57 9.51 9.56 9.55 9.51 9.51 9.55 9.54 9.52 9.53 9.56	(mol/l) NA NA 3.32 3.33 NA NA 5.47 NA NA S.47 NA NA NA NA S.5.15 4.85 5.08	(moU/kg) 3.74 3.75 6.17 5.83 5.93 5.80 5.47 5.73	(mol/l) NA NA 0.72 0.67 0.64 0.57 NA NA NA 0.72 0.77 0.77 0.88 0.88	(mol/kg) 0.82 0.76 0.73 0.65 0.81 0.82 0.80 1.00	concentration (mol/l) 0.02 NA 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02	concentration (mol/kg) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.64 0.49 0.57 0.50 0.58 0.58 0.54 0.55 0.71	1.40 1.01 1.36 1.36 1.78	0.76 0.52 0.81 0.81 1.07
GW3-S3 JW3-S4 D''3-S5 GW3-S6 GW3-S7 GW3-S9 GW3-S10 GW3-S10 GW3-S11 W3-S12 GW3-S13 GW3-S13 GW3-S13	2/13/2007 3/2/2007 3/2/2007 3/19/2007 3/19/2007 3/28/2007 3/28/2007 4/16/2007 4/16/2007 5/30/2007 8/23/2007 8/23/2007 12/11/2007	7 7 24 24 41 41 50 50 69 69 69 113 113 119 198 308	NA N	NA N	NA N	NA N	NA N	7.85 8.00 8.40 8.34 8.39 8.38 8.34 8.34 8.34 8.37 8.35 8.37 8.35 8.39	9.07 9.22 9.62 9.56 9.61 9.60 9.56 9.56 9.56 9.59 9.57 9.58 9.61 9.61	9.02 9.17 9.57 9.51 9.56 9.55 9.51 9.51 9.55 9.54 9.52 9.53 9.56 9.56	(mol/l) NA NA 3.32 3.33 NA NA NA 5.47 5.17 NA NA 5.26 5.18 4.85 5.08	(mol/kg) 3.74 3.75 6.17 5.83 5.93 5.80 5.47 5.73 6.15	(mol/l) NA NA NA 0.72 0.67 0.64 0.57 NA NA NA 0.72 0.72 0.72 0.71 0.88 0.88	(mol/kg) 0.82 0.76 0.73 0.65 0.81 0.81 0.82 0.80 1.00	concentration (mol/1) 0.02 NA 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	concentration (mol/kg) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.64 0.49 0.57 0.50 0.58 0.54 0.55 0.71	1.40 1.01 1.36 1.36 1.78	0.76 0.52 0.81 0.81 1.07
GW3-S3 JW3-S4 JW3-S4 JW3-S5 GW3-S6 GW3-S6 GW3-S9 (wet ground) JW3-S10 GW3-S11 "W3-S12 GW3-S13 GW3-S13 GW3-S15 JW3-S15 JW3-S15	2/13/2007 3/2/2007 3/2/2007 3/19/2007 3/19/2007 3/19/2007 3/28/2007 4/16/2007 4/16/2007 5/30/2007 8/23/2007 8/23/2007 8/23/2007 8/23/2007 12/11/2007	7 7 7 24 41 41 50 69 69 69 113 113 198 198 308	NA N	NA N	NA N	NA	NA N	7.85 8.00 8.40 8.34 8.39 8.34 8.34 8.37 8.35 8.37 8.35 8.39 8.39	9.07 9.22 9.62 9.56 9.61 9.60 9.56 9.56 9.60 9.59 9.57 9.58 9.61 9.61 9.58	9.02 9.17 9.57 9.51 9.56 9.51 9.51 9.55 9.51 9.55 9.54 9.52 9.53 9.56 9.56 9.56 9.59 9.59 9.59 9.59 9.59 9.50	(mol/l) NA NA 3.32 3.33 NA NA NA NA S.47 5.17 NA NA S.26 5.15 5.08 5.46	(mol/kg) 3.74 3.75 6.17 5.83 5.93 5.80 5.73 6.15	(mol/l) NA NA 0.72 0.67 0.64 0.57 NA NA NA 0.72 0.72 0.72 0.72 0.72 0.72 0.73	(mol/kg) 0.82 0.76 0.73 0.65 0.81 0.82 0.80 1.00	concentration (mol/1) 0.002 NA 0.002 0.001 0.002	concentration (mol/kg) 0.02	0.64 0.49 0.57 0.50 0.58 0.54 0.55 0.71	1.40 1.01 1.36 1.36 1.78	0.76 0.52 0.81 0.81 1.07
GW3-S3 JW3-S4 JW3-S5 GW3-S6 GW3-S7 GW3-S9 GW3-S10 GW3-S11 "W3-S12 GW3-S13 GW3-S13 GW3-S13 GW3-S13 GW3-S14 GW3-S15 JW3-S16 JW3-S16 JW3-S16	2/13/2007 3/2/2007 3/2/2007 3/19/2007 3/19/2007 3/19/2007 3/28/2007 4/16/2007 5/30/2007 5/30/2007 8/23/2007 12/11/2007 12/11/2007 6/18/2008	7 7 7 24 24 41 41 50 69 69 69 113 1198 198 308 498	NA N	NA N	NA N	NA N	NA	7.85 8.00 8.40 8.34 8.39 8.38 8.34 8.38 8.37 8.35 8.36 8.39 8.39 8.39	9.07 9.22 9.62 9.56 9.61 9.56 9.56 9.56 9.59 9.57 9.58 9.61 9.61 9.61 9.51	9.02 9.17 9.57 9.51 9.56 9.55 9.51 9.51 9.52 9.53 9.54 9.52 9.56 9.56 9.56 9.57	(mol/l) NA NA 3.32 3.33 NA NA 5.47 NA NA S.47 NA NA S.48 S.26 S.15 4.85 S.08 S.46 S.24 6.13	(mol/kg) 3,74 3,75 6,17 5,83 5,93 5,80 5,47 5,73 6,15 5,91 6,91	(mol/l) NA NA 0.72 0.67 0.64 0.57 NA NA 0.72 0.77 0.88 0.88 0.84 0.88	(mol/kg) 0.82 0.76 0.73 0.65 0.81 0.82 0.80 1.00	concentration (mol/l)	concentration (mol/kg) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	0.64 0.49 0.57 0.50 0.58 0.54 0.55 0.71 0.69 0.64	1.40 1.01 1.36 1.36 1.78 1.77 1.65 1.28	0.76 0.52 0.81 0.81 1.07
GW3-S3 JW3-S4 JW3-S4 JW3-S5 GW3-S6 GW3-S6 GW3-S9 (wet ground) JW3-S10 GW3-S11 "W3-S12 GW3-S13 GW3-S13 GW3-S15 JW3-S15 JW3-S15	2/13/2007 3/2/2007 3/2/2007 3/19/2007 3/19/2007 3/19/2007 3/28/2007 4/16/2007 4/16/2007 5/30/2007 8/23/2007 8/23/2007 8/23/2007 8/23/2007 12/11/2007	7 7 7 24 41 41 50 69 69 69 113 113 198 198 308	NA N	NA N	NA N	NA	NA N	7.85 8.00 8.40 8.34 8.39 8.34 8.34 8.37 8.35 8.37 8.35 8.39 8.39	9.07 9.22 9.62 9.56 9.61 9.60 9.56 9.56 9.60 9.59 9.57 9.58 9.61 9.61 9.58	9.02 9.17 9.57 9.51 9.56 9.51 9.51 9.55 9.51 9.55 9.54 9.52 9.53 9.56 9.56 9.56 9.59 9.59 9.59 9.59 9.59 9.50	(mol/l) NA NA 3.32 3.33 NA NA NA NA S.47 5.17 NA NA S.26 5.15 5.08 5.46	(mol/kg) 3.74 3.75 6.17 5.83 5.93 5.80 5.73 6.15	(mol/l) NA NA 0.72 0.67 0.64 0.57 NA NA NA 0.72 0.72 0.72 0.72 0.72 0.72 0.73	(mol/kg) 0.82 0.76 0.73 0.65 0.81 0.82 0.80 1.00	concentration (mol/1) 0.002 NA 0.002 0.001 0.002	concentration (mol/kg) 0.02	0.64 0.49 0.57 0.50 0.58 0.54 0.55 0.71	1.40 1.01 1.36 1.36 1.78	0.76 0.52 0.81 0.81 1.07
GW3-S3 JW3-S4 JW3-S5 GW3-S6 GW3-S7 GW3-S9 GW3-S10 GW3-S11 "W3-S12 GW3-S13 CW3-S13 CW3-S14 GW3-S15 JW3-S16 JW3-S16 JW3-S16	2/13/2007 3/2/2007 3/2/2007 3/19/2007 3/19/2007 3/19/2007 3/28/2007 4/16/2007 5/30/2007 5/30/2007 8/23/2007 12/11/2007 12/11/2007 6/18/2008	7 7 7 24 24 41 41 50 69 69 69 113 1198 198 308 498	NA N	NA N	NA N	NA N	NA	7.85 8.00 8.40 8.34 8.39 8.38 8.34 8.38 8.37 8.35 8.36 8.39 8.39 8.39	9.07 9.22 9.62 9.56 9.61 9.56 9.56 9.56 9.59 9.57 9.58 9.61 9.61 9.61 9.51	9.02 9.17 9.57 9.51 9.56 9.55 9.51 9.51 9.52 9.53 9.54 9.52 9.56 9.56 9.56 9.57	(mol/l) NA NA 3.32 3.33 NA NA 5.47 NA NA S.47 NA NA S.48 S.26 S.15 4.85 S.08 S.46 S.24 6.13	(mol/kg) 3,74 3,75 6,17 5,83 5,93 5,80 5,47 5,73 6,15 5,91 6,91	(mol/l) NA NA 0.72 0.67 0.64 0.57 NA NA 0.72 0.77 0.88 0.88 0.84 0.88	(mol/kg) 0.82 0.76 0.73 0.65 0.81 0.82 0.80 1.00	concentration (mol/l)	concentration (mol/kg) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	0.64 0.49 0.57 0.50 0.58 0.54 0.55 0.71 0.69 0.64	1.40 1.01 1.36 1.36 1.78 1.77 1.65 1.28	0.76 0.52 0.81 0.81 1.07
GW3-S3 JW3-S4 JW3-S5 GW3-S6 GW3-S7 GW3-S9 GW3-S10 GW3-S11 "W3-S12 GW3-S13 GW3-S13 GW3-S13 GW3-S13 GW3-S14 GW3-S15 JW3-S16 JW3-S16 JW3-S16	2/13/2007 3/2/2007 3/2/2007 3/19/2007 3/19/2007 3/19/2007 3/28/2007 4/16/2007 5/30/2007 5/30/2007 8/23/2007 12/11/2007 12/11/2007 6/18/2008	7 7 7 24 24 41 41 50 69 69 69 113 1198 198 308 498	NA N	NA N	NA N	NA N	NA	7.85 8.00 8.40 8.34 8.39 8.38 8.34 8.38 8.37 8.35 8.36 8.39 8.39 8.39	9.07 9.22 9.62 9.56 9.61 9.56 9.56 9.56 9.59 9.57 9.58 9.61 9.61 9.61 9.51	9.02 9.17 9.57 9.51 9.56 9.55 9.51 9.51 9.52 9.53 9.54 9.52 9.56 9.56 9.56 9.57	(mol/l) NA NA 3.32 3.33 NA NA 5.47 NA NA S.47 NA NA S.48 S.26 S.15 4.85 S.08 S.46 S.24 6.13	(mol/kg) 3,74 3,75 6,17 5,83 5,93 5,80 5,47 5,73 6,15 5,91 6,91	(mol/l) NA NA 0.72 0.67 0.64 0.57 NA NA 0.72 0.77 0.88 0.88 0.84 0.88	(mol/kg) 0.82 0.76 0.73 0.65 0.81 0.82 0.80 1.00	concentration (mol/l)	concentration (mol/kg) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	0.64 0.49 0.57 0.50 0.58 0.54 0.55 0.71 0.69 0.64	1.40 1.01 1.36 1.36 1.78 1.77 1.65 1.28	0.76 0.52 0.81 0.81 1.07
GW3-S3 JW3-S4 JW3-S5 GW3-S6 GW3-S7 GW3-S9 GW3-S10 GW3-S11 "W3-S12 GW3-S13 GW3-S13 GW3-S13 GW3-S13 GW3-S14 GW3-S15 JW3-S16 JW3-S16 JW3-S16	2/13/2007 3/2/2007 3/2/2007 3/19/2007 3/19/2007 3/19/2007 3/28/2007 4/16/2007 5/30/2007 5/30/2007 8/23/2007 12/11/2007 12/11/2007 6/18/2008	7 7 7 24 24 41 41 50 69 69 69 113 1198 198 308 498	NA N	NA N	NA	NA N	NA	7.85 8.00 8.40 8.34 8.39 8.38 8.34 8.38 8.37 8.35 8.36 8.39 8.39 8.39	9.07 9.22 9.62 9.56 9.61 9.56 9.56 9.56 9.59 9.57 9.58 9.61 9.61 9.61 9.51	9.02 9.17 9.57 9.51 9.56 9.55 9.51 9.51 9.52 9.53 9.54 9.52 9.56 9.56 9.56 9.57	(mol/l) NA NA 3.32 3.33 NA NA 5.47 NA NA S.47 NA NA S.48 S.26 S.15 4.85 S.08 S.46 S.24 6.13	(mol/kg) 3,74 3,75 6,17 5,83 5,93 5,80 5,47 5,73 6,15 5,91 6,91	(mol/l) NA NA 0.72 0.67 0.64 0.57 NA NA 0.72 0.77 0.88 0.88 0.84 0.88	(mol/kg) 0.82 0.76 0.73 0.65 0.81 0.82 0.80 1.00	concentration (mol/l) 0.02 NA 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02	concentration (mol/kg) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	0.64 0.49 0.57 0.50 0.58 0.54 0.55 0.71 0.69 0.64	1.40 1.01 1.36 1.36 1.78 1.77 1.65 1.28	0.76 0.52 0.81 0.81 1.07
GW3-S3 JW3-S4 JW3-S5 GW3-S6 GW3-S7 GW3-S9 GW3-S10 GW3-S11 "W3-S12 GW3-S13 CW3-S13 CW3-S14 GW3-S15 JW3-S16 JW3-S16 JW3-S16	2/13/2007 3/2/2007 3/2/2007 3/19/2007 3/19/2007 3/19/2007 3/28/2007 4/16/2007 5/30/2007 5/30/2007 8/23/2007 12/11/2007 12/11/2007 6/18/2008	7 7 7 24 24 41 41 50 69 69 69 113 1198 198 308 498	NA N	NA N	NA	NA N	NA	7.85 8.00 8.40 8.34 8.39 8.38 8.34 8.38 8.37 8.35 8.36 8.39 8.39 8.39	9.07 9.22 9.62 9.56 9.61 9.56 9.56 9.56 9.59 9.57 9.58 9.61 9.61 9.61 9.51	9.02 9.17 9.57 9.51 9.56 9.55 9.51 9.51 9.52 9.53 9.54 9.52 9.56 9.56 9.56 9.57	(mol/l) NA NA 3.32 3.33 NA NA 5.47 NA NA S.47 NA NA S.48 S.26 S.15 4.85 S.08 S.46 S.24 6.13	(mol/kg) 3,74 3,75 6,17 5,83 5,93 5,80 5,47 5,73 6,15 5,91 6,91	(mol/l) NA NA 0.72 0.67 0.64 0.57 NA NA 0.72 0.77 0.88 0.88 0.84 0.88	(mol/kg) 0.82 0.76 0.73 0.65 0.81 0.82 0.80 1.00	concentration (mol/l) 0.02 NA 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02	concentration (mol/kg) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	0.64 0.49 0.57 0.50 0.58 0.54 0.55 0.71 0.69 0.64	1.40 1.01 1.36 1.36 1.78 1.77 1.65 1.28	0.76 0.52 0.81 0.81 1.07

Constants: Molarity to molality conversion factor for GWB in cell AR5 or AR29 = Concentration of Na+ (mol/l) / Concentration of Na+ (mol/kg), given in SP20-4 Appendix B = 3.98/3.53 For the H+ log gamma in AS5 or AS29, see the explanation section of worksheet "Fig 31" of this Excel file. The pH correction factor A in cell AT5 can be found in Excel file "Brine acid base titration", worksheet "sum" For the C1- log gamma in AV5/29 see the explanation section of worksheet "Fig 31" of this Excel file For the Mg++ log gamma in AX5/29, see the explanation section of worksheet "Fig 31" of this Excel file. For the activity of water (aw) in AZ5/29 see the explanation section of worksheet "Fig 31" of this Excel file. log k for brucite in cell BB5 = 17.1090 log k for phase-5 in cell BC5 = 43.19 log k for phase-3 in cell BD5 = 26.0297 These Log K's can be found in the EQ3/6 database: data0.hmo, and in the memo: Xiong et al., 2009 Time in column AM= collection date in column AL - starting date in cell A6 (data in column AL and cell A6 can be found in WIPP-MMMgO-5, p60-71) Calculation: Columns AN through AR are not used in the report pH in column AS can be found in notebook WIPP-MM MgO-5, p60-71. pcH in column AT= pH in column AS + A (pH correction factor) in Cell AT5 pmH in column AU = pcH in column AT + log (molarity to malality conversion factor in Cell AR5) Cl concentration (mole/l) in column AV can be found in Excel file "Cl analysis" on column D. CI concentration (mol/kg) in column AW = CI concentration (mol/l) in column AV x molarity to molality conversion factor in cell AR5 Mg concentration (mol/l) in column AX can be found in excell file "ICP-AES" column G. Mg Concentration (mol/kg) in column AY = Mg concentratin (mol/l) in column AV x molarity to molality conversion factor in cell AR5 Ca concentration (mol/l) in column AZ can be found in excell file "ICP-AES" column H. Ca concentration (mol/kg) in column BA = Ca concentration (mol/l) in column AZ x molarity to molality conversion factor in cell AR5 SI of brucie in column BB = equation 8 in report "=log (Mg concentration in column AY) + Mg log gamma in cell AX5/29 + 2 pmH in column AU - 2 H log gamma in cell AS5/29 + 2 log Aw in cell AZ5/29 - log k of brucite in cell BB5 SI of phase-5 in column BC = equation 6 in report "=3 log (Mg concentration in column AY) + 3 Mg log gamma in cell AX5/29 + 5 pmH in column AU "- 5 H log gamma in cell AS5/29+ 9 log Aw in cell AZ5/29" "+ log (CI -IC in column AW) + Ci log gomma in cell AV5/29 - log k of phase-5 in cell BC5" SI of phase-3 in column BD = equation 6 in report "=2 log (Mg concentration in column AY) + 2 Mg log gamma in cell AX5/29 + 3 pmH in column AU"

"- 3 H log gamma in cell AS5/29+ 7 log Aw in cell AZ5/29"

"+ log (Cl concentration in column AW) + Cl log gamma in cell AV5/29 -log k of phase-3 in cell BD5"

3																			
GW20-L	Collection Date	Time (dec)	N-4 I I-44	Nethod	Not Used	Not Used	Not Used	-17			•	CI concentration (mol/kg)	Mg concentration	Mg concentration	Ca concentration (mol/l)	Ca concentration (mol/kg)	SI (brucite)	SI (phase-5)	SI (phase-3)
GW20-L1	2/13/2007	Time (day)	NA NA	NA NA	NA NA	NA NA	NA NA	pH 7.30	pcH 8.52	pmH 8.47	(mol/l) 0.00	0.00	NA NA	(mor/kg)	0.0129	0.0145	31 (bluelle)	31 (phase-3)	51 (phase-5)
GW20-L1	2/13/2007	7	NA NA	NA NA	NA NA	NA NA	NA NA	7.33	8.55	8.50	0.00	0.00	NA NA	 	0.0123	0.0148		1	
GW20-L3	3/2/2007	24	NA	NA	NA	NA	NA	7.54	8.76	8.71	5.22	5.88	NA		0.0000	0.0000			
GW20-L4	3/2/2007	24	NA	NA	NA	NA	NA	7.60	8.82	8.77	9.43	10.64	NA		0,0000	0.0000			
GW20-L5	3/28/2007	50	NA	NA	NA	NA	NA	7.79	9.01	8.96	5.67	6.39	NA NA		0,0139	0,0157			
GW20-L6	3/28/2007	50	NA	NA	NA.	NA	NA NA	7,78	9.00	8.95	5.66	6.39	NA.		0.0138	0.0155		1	
GW20-L7 GW20-L8	5/30/2007 5/30/2007	113	NA NA	NA NA	NA NA	NA NA	NA NA	8.07 8.06	9.29 9.28	9.24 9.23	5.11 5.11	5.76 5.76	NA NA		0.0158 0.0171	0.0178			
GW20-L9	8/23/2007	198	NA NA	NA NA	NA NA	NA NA	NA NA	8.32	9.54	9.49	4.69	5.28	1.20	1.35	0.0163	0.0193	0.67	1.79	1.12
GW20-L10	8/23/2007	198	NA	NA NA	NA.	NA NA	NA NA	8.31	9.53	9.48	5.07	5,72	1.20	1.36	0.0168	0.0190	0.65	1.78	1.13
GW20-L11	2/12/2008	371	NA	NA	NA	NA	NA	8.34	9.56	9.51	4.62	5.21	1.03	1.16	0.0239	0.0270	0.65	1.69	1.04
GW20-L12	2/12/2008	371	NA	NA	NA	NA	NA	8.35	9.57	9.52	4.99	5.63	1,13	1.27	0.0247	0.0279	0.71	1.90	1.19
													 			-		 	
													 						
							 					1						†	
																.,,			
0							1				l .		1					1 1	
							1												
4																			
4																			
4											Cl concentration	Cl concentration	Ma concentration	Ma concentration	Ca concentration	Ca concentration			
	Collection Date	Time (days)	Not Used	Not Used	Not Used	Not Used	Not Used	На	псН	pmH					Ca concentration		SI (brucite)	SI (phase-5)	SI (phase-3)
€УУЗ-М	Collection Date	Time (days)			Not Used	Not Used	Not Used	pH 7.85	pcH	pmH	(mol/l)	Cl concentration (mol/kg)	(mol/l)	(mol/kg)	(mol/l)	(mol/kg)	SI (brucite)	SI (phase-5)	SI (phase-3)
G V3-M G W3-M1	Collection Date 2/13/2007 2/13/2007	Time (days)	NA	NA	NA	Not Used NA NA	Not Used NA NA	pH 7.85 8.00	pcH 9.07 9.22	pmH 9.02 9.17							SI (brucite) -0.36 -0.07	SI (phase-5)	SI (phase-3)
€УУЗ-М	2/13/2007	7				NA	NA	7.85	9.07	9.02	(mol/l) NA		(mol/l) 0.91	(mol/kg) 1.02	(mol/l) 0.0143	(mol/kg) 0.0161	-0.36	SI (phase-5)	SI (phase-3)
GV3-M GW3-M1 GW3-M2 GW3-M3	2/13/2007 2/13/2007 3/2/2007 3/2/2007	7 7 24 24	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	7.85 8.00 8.40 8.34	9.07 9.22 9.62 9.56	9.02 9.17 9.57 9.51	(mol/l) NA NA 5.16 5.34	5.81 6.02	(mol/l) 0.91 0.89 0.79 NA	(mol/kg) 1.02 1.00 0.89	(mol/l) 0.0143 0.0148 0.1526 0.1846	(mol/kg) 0.0161 0.0167 0.1721 0.2082	-0.36 -0.07 0.68	1.71	1.03
GV3-M GW3-M1 GW3-M2 GW3-M3 GW3-M4 GW3-M5	2/13/2007 2/13/2007 3/2/2007 3/2/2007 3/28/2007	7 7 24 24 50	NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA	NA NA NA NA	7.85 8.00 8.40 8.34 8.39	9.07 9.22 9.62 9.56 9.61	9.02 9.17 9.57 9.51 9.56	(mol/l) NA NA 5.16 5.34 4.87	5.81 6.02 5.50	(mol/l) 0.91 0.89 0.79 NA 0.84	(mol/kg) 1.02 1.00 0.89 0.94	(mol/l) 0.0143 0.0148 0.1526 0.1846 0.0152	(mol/kg) 0.0161 0.0167 0.1721 0.2082 0.0172	-0.36 -0.07 0.68	1.71	1.03
GV3-M GW3-M1 GW3-M2 GW3-M3 GW3-M4 GW3-M6	2/13/2007 2/13/2007 3/2/2007 3/2/2007 3/28/2007 3/28/2007	7 7 24 24 50 50	NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	7.85 8.00 8.40 8.34 8.39 8.38	9.07 9.22 9.62 9.56 9.61 9.60	9.02 9.17 9.57 9.51 9.56 9.55	(mol/l) NA NA 5.16 5.34 4.87 5.46	5.81 6.02 5.50 6.16	(mol/l) 0.91 0.89 0.79 NA 0.84 0.78	(mol/kg) 1.02 1.00 0.89 0.94 0.88	(mol/l) 0.0143 0.0148 0.1526 0.1846 0.0152 0.0140	(mol/kg) 0.0161 0.0167 0.1721 0.2082 0.0172 0.0158	-0.36 -0.07 0.68 0.68 0.63	1.71 1.71 1.62	1.03 1.03 0.99
GV3-M GW3-M1 GW3-M2 GW3-M3 GW3-M5 GW3-M6 GW3-M7	2/13/2007 2/13/2007 3/2/2007 3/2/2007 3/28/2007 3/28/2007 5/30/2007	7 7 24 24 50 50	NA NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	7.85 8.00 8.40 8.34 8.39 8.38 8.39	9.07 9.22 9.62 9.56 9.61 9.60 9.61	9.02 9.17 9.57 9.51 9.56 9.55 9.56	(mol/l) NA NA 5.16 5.34 4.87 5.46 4.86	5.81 6.02 5.50 6.16 5.48	(mol/l) 0.91 0.89 0.79 NA 0.84 0.78	(mol/kg) 1.02 1.00 0.89 0.94 0.88 0.86	(mol/l) 0.0143 0.0148 0.1526 0.1846 0.0152	(mol/kg) 0.0161 0.0167 0.1721 0.2082 0.0172	-0.36 -0.07 0.68 -0.68 0.63 0.64	1.71	1.03
GV3-M GW3-M1 GW3-M2 GW3-M3 GW3-M4 GW3-M6	2/13/2007 2/13/2007 3/2/2007 3/2/2007 3/28/2007 3/28/2007	7 7 24 24 50 50	NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	7.85 8.00 8.40 8.34 8.39 8.38	9.07 9.22 9.62 9.56 9.61 9.60	9.02 9.17 9.57 9.51 9.56 9.55	(mol/l) NA NA 5.16 5.34 4.87 5.46	5.81 6.02 5.50 6.16	(mol/l) 0.91 0.89 0.79 NA 0.84 0.78	(mol/kg) 1.02 1.00 0.89 0.94 0.88	(mol/l) 0.0143 0.0148 0.1526 0.1846 0.0152 0.0140 0.0181	(mol/kg) 0.0161 0.0167 0.1721 0.2082 0.0172 0.0158 0.0204	-0.36 -0.07 0.68 0.68 0.63	1.71 1.71 1.62 1.58	1.03 1.03 0.99 0.94
GV3-M GW3-M1 GW3-M2 UW3-M3 UW3-M4 GW3-M6 GW3-M7 UW3-M8 UW3-M9 3-M10	2/13/2007 2/13/2007 3/2/2007 3/2/2007 3/28/2007 3/28/2007 5/30/2007 5/30/2007 8/23/2007 8/23/2007	7 7 24 24 50 50 113 113 198 198	NA NA NA NA NA NA NA NA NA	NA	NA N	NA N	NA NA NA NA NA NA NA NA NA	7.85 8.00 8.40 8.34 8.39 8.38 8.39 8.37 8.47	9,07 9,22 9,62 9,56 9,61 9,60 9,61 9,59 9,69	9.02 9.17 9.57 9.51 9.56 9.55 9.56 9.54 9.64 9.60	(mol/l) NA NA 5.16 5.34 4.87 5.46 4.86 4.90 4.85 6.00	5.81 6.02 5.50 6.16 5.48 5.53 5.46 0.00	(mol/l) 0.91 0.89 0.79 NA 0.84 0.78 0.76 0.70 0.78	(mol/kg) 1.02 1.00 0.89 0.94 0.88 0.86 0.78 0.87	(mol/l) 0.0143 0.0148 0.1526 0.1846 0.0152 0.0140 0.0181 0.0162 0.0170 0.0172	(mol/kg) 0.0161 0.0167 0.1721 0.2082 0.0172 0.0158 0.0204 0.0183 0.0192	-0.36 -0.07 0.68 0.68 0.63 0.64 0.56 0.81	1.71 1.71 1.62 1.58 1.37 2.01	1.03 1.03 0.99 0.94 0.81 1.20
GV3-M GW3-M1 GW3-M2 OW3-M3 OW3-M3 OW3-M6 GW3-M7 OW3-M6 GW3-M7 OW3-M9 J-M10 GW3-M11	2/13/2007 2/13/2007 3/2/2007 3/2/2007 3/28/2007 3/28/2007 5/30/2007 5/30/2007 8/23/2007 8/23/2007 12/11/2007	7 7 7 24 24 50 50 113 113 198 198	NA N	NA N	NA N	NA N	NA N	7.85 8.00 8.40 8.34 8.39 8.38 8.39 8.37 8.47 8.43	9.07 9.22 9.62 9.56 9.61 9.60 9.61 9.69 9.65 9.58	9.02 9.17 9.57 9.51 9.56 9.55 9.56 9.54 9.64 9.60 9.53	(mol/l) NA NA S.16 5.34 4.87 5.46 4.86 4.90 4.85 6.00 5.33	(mol/kg) 5.81 6.02 5.50 6.16 5.48 5.53 5.46 0.00 6.01	(mol/l) 0.91 0.89 0.79 NA 0.84 0.78 0.76 0.70 0.78 0.78	(mol/kg) 1.02 1.00 0.89 0.94 0.88 0.86 0.78 0.87	(mol/l) 0.0143 0.0148 0.1526 0.1846 0.0152 0.0140 0.0181 0.0162 0.0170 0.0172 0.0152	(mol/kg) 0.0161 0.0167 0.1721 0.2082 0.0172 0.0158 0.0204 0.0183 0.0192 0.0194 0.0171	-0.36 -0.07 0.68 0.68 0.63 0.64 0.56 0.81 0.73	1.71 1.71 1.62 1.58 1.37 2.01	1.03 1.03 0.99 0.94 0.81 1.20
GV3-M GW3-M1 GW3-M2 GW3-M3 GW3-M3 GW3-M6 GW3-M7 GW3-M8 GW3-M8 GW3-M1 GW3-M10 GW3-M11	2/13/2007 2/13/2007 3/2/2007 3/2/2007 3/28/2007 3/28/2007 3/28/2007 5/30/2007 8/23/2007 8/23/2007 8/23/2007 12/11/2007 12/11/2007	7 7 7 24 24 24 50 50 50 113 113 118 198 308 308	NA N	NA N	NA N	NA	NA N	7.85 8.00 8.40 8.34 8.39 8.38 8.39 8.37 8.47 8.47 8.43 8.36 8.37	9.07 9.22 9.62 9.56 9.61 9.60 9.61 9.59 9.69 9.65 9.58 9.59	9.02 9.17 9.57 9.51 9.56 9.55 9.56 9.54 9.64 9.60 9.53 9.54	(mol/l) NA NA S.16 5.34 4.87 5.46 4.86 4.90 4.85 6.00 5.33 5.26	(mol/kg) 5.81 6.02 5.50 6.16 5.48 5.53 5.46 0.00 6.01 5.93	(mol/l) 0.91 0.89 0.79 NA 0.84 0.78 0.76 0.70 0.78 0.78 0.78 0.77	(mol/kg) 1.02 1.00 0.89 0.94 0.88 0.86 0.78 0.87 0.87	(mol/l) 0.0143 0.0148 0.1526 0.1846 0.0152 0.0140 0.0181 0.0162 0.0170 0.0172 0.0152 0.0152	(mol/kg) 0.0161 0.0167 0.1721 0.2082 0.0172 0.0158 0.0204 0.0183 0.0192 0.0194 0.0171	-0.36 -0.07 0.68 0.68 0.63 0.64 0.56 0.81 0.73 0.58	1.71 1.62 1.58 1.37 2.01 1.48 1.51	1.03 1.03 0.99 0.94 0.81 1.20
GV3-M GW3-M1 GW3-M2 UW3-M3 UW3-M3 UW3-M6 GW3-M7 UW3-M6 GW3-M7 UW3-M9 3-M10 GW3-M11 GW3-M12 GW3-M12	2/13/2007 2/13/2007 3/2/2007 3/2/2007 3/28/2007 3/28/2007 5/30/2007 5/30/2007 8/23/2007 8/23/2007 12/11/2007 6/18/2008	7 7 7 24 24 24 50 50 50 113 113 198 198 308 308 498	NA N	NA N	NA N	NA NA NA NA NA NA NA NA NA NA NA NA	NA N	7.85 8.00 8.40 8.34 8.39 8.38 8.39 8.37 8.47 8.43 8.36 8.37 8.31	9.07 9.22 9.62 9.56 9.61 9.60 9.61 9.59 9.69 9.65 9.58 9.59 9.59	9.02 9.17 9.57 9.51 9.56 9.55 9.56 9.54 9.64 9.60 9.53 9.54 9.48	(mol/l) NA NA 5.16 5.34 4.87 5.46 4.86 4.90 4.85 0.00 5.33 5.32 4.44	(mol/kg) 5.81 6.02 5.50 6.16 5.48 5.53 5.46 0.00 6.01 5.93	(mol/l) 0.91 0.89 0.79 NA 0.84 0.78 0.76 0.70 0.78 0.78 0.78 0.77 0.77 0.76	(mol/kg) 1.02 1.00 0.89 0.94 0.88 0.86 0.78 0.87 0.87 0.86	(mol/l) 0.0143 0.0148 0.1526 0.1846 0.0152 0.0140 0.0181 0.0162 0.0170 0.0172 0.0152 0.0156 0.0186	(mol/kg) 0.0161 0.0167 0.1721 0.2082 0.0172 0.0158 0.0204 0.0183 0.0192 0.0194 0.0171 0.0176	-0.36 -0.07 0.68 0.68 0.63 0.64 0.56 0.81 0.73 0.58 0.60 0.37	1.71 1.71 1.62 1.58 1.37 2.01 1.48 1.51 0.82	1.03 1.03 0.99 0.94 0.81 1.20 0.90 0.91
GV3-M GW3-M1 GW3-M2 GW3-M3 GW3-M3 GW3-M6 GW3-M7 GW3-M8 GW3-M8 GW3-M1 GW3-M10 GW3-M11	2/13/2007 2/13/2007 3/2/2007 3/2/2007 3/28/2007 3/28/2007 3/28/2007 5/30/2007 8/23/2007 8/23/2007 8/23/2007 12/11/2007 12/11/2007	7 7 7 24 24 24 50 50 50 113 113 118 198 308 308	NA N	NA N	NA N	NA	NA N	7.85 8.00 8.40 8.34 8.39 8.38 8.39 8.37 8.47 8.47 8.43 8.36 8.37	9.07 9.22 9.62 9.56 9.61 9.60 9.61 9.59 9.69 9.65 9.58 9.59	9.02 9.17 9.57 9.51 9.56 9.55 9.56 9.54 9.64 9.60 9.53 9.54	(mol/l) NA NA S.16 5.34 4.87 5.46 4.86 4.90 4.85 6.00 5.33 5.26	(mol/kg) 5.81 6.02 5.50 6.16 5.48 5.53 5.46 0.00 6.01 5.93	(mol/l) 0.91 0.89 0.79 NA 0.84 0.78 0.76 0.70 0.78 0.78 0.78 0.77	(mol/kg) 1.02 1.00 0.89 0.94 0.88 0.86 0.78 0.87 0.87	(mol/l) 0.0143 0.0148 0.1526 0.1846 0.0152 0.0140 0.0181 0.0162 0.0170 0.0172 0.0152 0.0152	(mol/kg) 0.0161 0.0167 0.1721 0.2082 0.0172 0.0158 0.0204 0.0183 0.0192 0.0194 0.0171	-0.36 -0.07 0.68 0.68 0.63 0.64 0.56 0.81 0.73 0.58	1.71 1.62 1.58 1.37 2.01 1.48 1.51	1.03 1.03 0.99 0.94 0.81 1.20
GV3-M GW3-M1 GW3-M2 UW3-M3 UW3-M3 UW3-M6 GW3-M7 UW3-M6 GW3-M7 UW3-M9 3-M10 GW3-M11 GW3-M12 GW3-M12	2/13/2007 2/13/2007 3/2/2007 3/2/2007 3/28/2007 3/28/2007 5/30/2007 5/30/2007 8/23/2007 8/23/2007 12/11/2007 6/18/2008	7 7 7 24 24 24 50 50 50 113 113 198 198 308 308 498	NA N	NA N	NA N	NA NA NA NA NA NA NA NA NA NA NA NA	NA N	7.85 8.00 8.40 8.34 8.39 8.38 8.39 8.37 8.47 8.43 8.36 8.37 8.31	9.07 9.22 9.62 9.56 9.61 9.60 9.61 9.59 9.69 9.65 9.58 9.59 9.59	9.02 9.17 9.57 9.51 9.56 9.55 9.56 9.54 9.64 9.60 9.53 9.54 9.48	(mol/l) NA NA 5.16 5.34 4.87 5.46 4.86 4.90 4.85 0.00 5.33 5.32 4.44	(mol/kg) 5.81 6.02 5.50 6.16 5.48 5.53 5.46 0.00 6.01 5.93	(mol/l) 0.91 0.89 0.79 NA 0.84 0.78 0.76 0.70 0.78 0.78 0.78 0.77 0.77 0.76	(mol/kg) 1.02 1.00 0.89 0.94 0.88 0.86 0.78 0.87 0.87 0.86	(mol/l) 0.0143 0.0148 0.1526 0.1846 0.0152 0.0140 0.0181 0.0162 0.0170 0.0172 0.0152 0.0156 0.0186	(mol/kg) 0.0161 0.0167 0.1721 0.2082 0.0172 0.0158 0.0204 0.0183 0.0192 0.0194 0.0171 0.0176	-0.36 -0.07 0.68 0.68 0.63 0.64 0.56 0.81 0.73 0.58 0.60 0.37	1.71 1.71 1.62 1.58 1.37 2.01 1.48 1.51 0.82	1.03 1.03 0.99 0.94 0.81 1.20 0.90 0.91
GV3-M GW3-M1 GW3-M2 UW3-M3 UW3-M3 UW3-M6 GW3-M7 UW3-M6 GW3-M7 UW3-M9 3-M10 GW3-M11 GW3-M12 GW3-M12	2/13/2007 2/13/2007 3/2/2007 3/2/2007 3/28/2007 3/28/2007 5/30/2007 5/30/2007 8/23/2007 8/23/2007 12/11/2007 6/18/2008	7 7 7 24 24 24 50 50 50 113 113 198 198 308 308 498	NA N	NA N	NA N	NA NA NA NA NA NA NA NA NA NA NA NA	NA N	7.85 8.00 8.40 8.34 8.39 8.38 8.39 8.37 8.47 8.43 8.36 8.37 8.31	9.07 9.22 9.62 9.56 9.61 9.60 9.61 9.59 9.69 9.65 9.58 9.59 9.59	9.02 9.17 9.57 9.51 9.56 9.55 9.56 9.54 9.64 9.60 9.53 9.54 9.48	(mol/l) NA NA 5.16 5.34 4.87 5.46 4.86 4.90 4.85 0.00 5.33 5.32 4.44	(mol/kg) 5.81 6.02 5.50 6.16 5.48 5.53 5.46 0.00 6.01 5.93	(mol/l) 0.91 0.89 0.79 NA 0.84 0.78 0.76 0.70 0.78 0.78 0.78 0.77 0.77 0.76	(mol/kg) 1.02 1.00 0.89 0.94 0.88 0.86 0.78 0.87 0.87 0.86	(mol/l) 0.0143 0.0148 0.1526 0.1846 0.0152 0.0140 0.0181 0.0162 0.0170 0.0172 0.0152 0.0156 0.0186	(mol/kg) 0.0161 0.0167 0.1721 0.2082 0.0172 0.0158 0.0204 0.0183 0.0192 0.0194 0.0171 0.0176	-0.36 -0.07 0.68 0.68 0.63 0.64 0.56 0.81 0.73 0.58 0.60 0.37	1.71 1.71 1.62 1.58 1.37 2.01 1.48 1.51 0.82	1.03 1.03 0.99 0.94 0.81 1.20 0.90 0.91
GV3-M GW3-M1 GW3-M2 UW3-M3 UW3-M3 UW3-M6 GW3-M7 UW3-M6 GW3-M7 UW3-M9 3-M10 GW3-M11 GW3-M12 GW3-M12	2/13/2007 2/13/2007 3/2/2007 3/2/2007 3/28/2007 3/28/2007 5/30/2007 5/30/2007 8/23/2007 8/23/2007 12/11/2007 6/18/2008	7 7 7 24 24 24 50 50 50 113 113 198 198 308 308 498	NA N	NA N	NA N	NA NA NA NA NA NA NA NA NA NA NA NA	NA N	7.85 8.00 8.40 8.34 8.39 8.38 8.39 8.37 8.47 8.43 8.36 8.37 8.31	9.07 9.22 9.62 9.56 9.61 9.60 9.61 9.59 9.69 9.65 9.58 9.59 9.59	9.02 9.17 9.57 9.51 9.56 9.55 9.56 9.54 9.64 9.60 9.53 9.54 9.48	(mol/l) NA NA 5.16 5.34 4.87 5.46 4.86 4.90 4.85 0.00 5.33 5.32 4.44	(mol/kg) 5.81 6.02 5.50 6.16 5.48 5.53 5.46 0.00 6.01 5.93	(mol/l) 0.91 0.89 0.79 NA 0.84 0.78 0.76 0.70 0.78 0.78 0.78 0.77 0.77 0.76	(mol/kg) 1.02 1.00 0.89 0.94 0.88 0.86 0.78 0.87 0.87 0.86	(mol/l) 0.0143 0.0148 0.1526 0.1846 0.0152 0.0140 0.0181 0.0162 0.0170 0.0172 0.0152 0.0156 0.0186	(mol/kg) 0.0161 0.0167 0.1721 0.2082 0.0172 0.0158 0.0204 0.0183 0.0192 0.0194 0.0171 0.0176	-0.36 -0.07 0.68 0.68 0.63 0.64 0.56 0.81 0.73 0.58 0.60 0.37	1.71 1.71 1.62 1.58 1.37 2.01 1.48 1.51 0.82	1.03 1.03 0.99 0.94 0.81 1.20 0.90 0.91
GW3-M1 GW3-M1 GW3-M2 UW3-M3 UW3-M3 UW3-M6 GW3-M7 UW3-M6 GW3-M7 UW3-M9 3-M10 GW3-M11 GW3-M12 GW3-M12	2/13/2007 2/13/2007 3/2/2007 3/2/2007 3/28/2007 3/28/2007 5/30/2007 5/30/2007 8/23/2007 8/23/2007 12/11/2007 6/18/2008	7 7 7 24 24 24 50 50 50 113 113 198 198 308 308 498	NA N	NA N	NA N	NA NA NA NA NA NA NA NA NA NA NA NA	NA N	7.85 8.00 8.40 8.34 8.39 8.38 8.39 8.37 8.47 8.43 8.36 8.37 8.31	9.07 9.22 9.62 9.56 9.61 9.60 9.61 9.59 9.69 9.65 9.58 9.59 9.59	9.02 9.17 9.57 9.51 9.56 9.55 9.56 9.54 9.64 9.60 9.53 9.54 9.48	(mol/l) NA NA 5.16 5.34 4.87 5.46 4.86 4.90 4.85 0.00 5.33 5.32 4.44	(mol/kg) 5.81 6.02 5.50 6.16 5.48 5.53 5.46 0.00 6.01 5.93	(mol/l) 0.91 0.89 0.79 NA 0.84 0.78 0.76 0.70 0.78 0.78 0.78 0.77 0.77 0.76	(mol/kg) 1.02 1.00 0.89 0.94 0.88 0.86 0.78 0.87 0.87 0.86	(mol/l) 0.0143 0.0148 0.1526 0.1846 0.0152 0.0140 0.0181 0.0162 0.0170 0.0172 0.0152 0.0156 0.0186	(mol/kg) 0.0161 0.0167 0.1721 0.2082 0.0172 0.0158 0.0204 0.0183 0.0192 0.0194 0.0171 0.0176	-0.36 -0.07 0.68 0.68 0.63 0.64 0.56 0.81 0.73 0.58 0.60 0.37	1.71 1.71 1.62 1.58 1.37 2.01 1.48 1.51 0.82	1.03 1.03 0.99 0.94 0.81 1.20 0.90 0.91
GW3-M1 GW3-M1 GW3-M2 UW3-M3 UW3-M3 UW3-M6 GW3-M7 UW3-M6 GW3-M7 UW3-M9 3-M10 GW3-M11 GW3-M12 GW3-M12	2/13/2007 2/13/2007 3/2/2007 3/2/2007 3/28/2007 3/28/2007 5/30/2007 5/30/2007 8/23/2007 8/23/2007 12/11/2007 6/18/2008	7 7 7 24 24 24 50 50 50 113 113 198 198 308 308 498	NA N	NA N	NA N	NA NA NA NA NA NA NA NA NA NA NA NA	NA N	7.85 8.00 8.40 8.34 8.39 8.38 8.39 8.37 8.47 8.43 8.36 8.37 8.31	9.07 9.22 9.62 9.56 9.61 9.60 9.61 9.59 9.69 9.65 9.58 9.59 9.59	9.02 9.17 9.57 9.51 9.56 9.55 9.56 9.54 9.64 9.60 9.53 9.54 9.48	(mol/l) NA NA 5.16 5.34 4.87 5.46 4.86 4.90 4.85 0.00 5.33 5.32 4.44	(mol/kg) 5.81 6.02 5.50 6.16 5.48 5.53 5.46 0.00 6.01 5.93	(mol/l) 0.91 0.89 0.79 NA 0.84 0.78 0.76 0.70 0.78 0.78 0.78 0.77 0.77 0.76	(mol/kg) 1.02 1.00 0.89 0.94 0.88 0.86 0.78 0.87 0.87 0.86	(mol/l) 0.0143 0.0148 0.1526 0.1846 0.0152 0.0140 0.0181 0.0162 0.0170 0.0172 0.0152 0.0156 0.0186	(mol/kg) 0.0161 0.0167 0.1721 0.2082 0.0172 0.0158 0.0204 0.0183 0.0192 0.0194 0.0171 0.0176	-0.36 -0.07 0.68 0.68 0.63 0.64 0.56 0.81 0.73 0.58 0.60 0.37	1.71 1.71 1.62 1.58 1.37 2.01 1.48 1.51 0.82	1.03 1.03 0.99 0.94 0.81 1.20 0.90 0.91
GV3-M GW3-M1 GW3-M2 UW3-M3 UW3-M3 UW3-M6 GW3-M7 UW3-M6 GW3-M7 UW3-M9 3-M10 GW3-M11 GW3-M12 GW3-M12	2/13/2007 2/13/2007 3/2/2007 3/2/2007 3/28/2007 3/28/2007 5/30/2007 5/30/2007 8/23/2007 8/23/2007 12/11/2007 6/18/2008	7 7 7 24 24 24 50 50 50 113 113 198 198 308 308 498	NA N	NA N	NA N	NA NA NA NA NA NA NA NA NA NA NA NA	NA N	7.85 8.00 8.40 8.34 8.39 8.38 8.39 8.37 8.47 8.43 8.36 8.37 8.31	9.07 9.22 9.62 9.56 9.61 9.60 9.61 9.59 9.69 9.65 9.58 9.59 9.59	9.02 9.17 9.57 9.51 9.56 9.55 9.56 9.54 9.64 9.60 9.53 9.54 9.48	(mol/l) NA NA 5.16 5.34 4.87 5.46 4.86 4.90 4.85 0.00 5.33 5.32 4.44	(mol/kg) 5.81 6.02 5.50 6.16 5.48 5.53 5.46 0.00 6.01 5.93	(mol/l) 0.91 0.89 0.79 NA 0.84 0.78 0.76 0.70 0.78 0.78 0.78 0.77 0.77 0.76	(mol/kg) 1.02 1.00 0.89 0.94 0.88 0.86 0.78 0.87 0.87 0.86	(mol/l) 0.0143 0.0148 0.1526 0.1846 0.0152 0.0140 0.0181 0.0162 0.0170 0.0172 0.0152 0.0156 0.0186	(mol/kg) 0.0161 0.0167 0.1721 0.2082 0.0172 0.0158 0.0204 0.0183 0.0192 0.0194 0.0171 0.0176	-0.36 -0.07 0.68 0.68 0.63 0.64 0.56 0.81 0.73 0.58 0.60 0.37	1.71 1.71 1.62 1.58 1.37 2.01 1.48 1.51 0.82	1.03 1.03 0.99 0.94 0.81 1.20 0.90 0.91
GV3-M GW3-M1 GW3-M2 UW3-M3 UW3-M3 UW3-M4 CW3-M6 GW3-M7 UW3-M8 UW3-M9 UW3-M10 GW3-M11 GW3-M11 GW3-M11 GW3-M12	2/13/2007 2/13/2007 3/2/2007 3/2/2007 3/28/2007 3/28/2007 5/30/2007 5/30/2007 8/23/2007 8/23/2007 12/11/2007 6/18/2008	7 7 7 24 24 24 50 50 50 113 113 198 198 308 308 498	NA N	NA N	NA N	NA NA NA NA NA NA NA NA NA NA NA NA	NA N	7.85 8.00 8.40 8.34 8.39 8.38 8.39 8.37 8.47 8.43 8.36 8.37 8.31	9.07 9.22 9.62 9.56 9.61 9.60 9.61 9.59 9.69 9.65 9.58 9.59 9.59	9.02 9.17 9.57 9.51 9.56 9.55 9.56 9.54 9.64 9.60 9.53 9.54 9.48	(mol/l) NA NA 5.16 5.34 4.87 5.46 4.86 4.90 4.85 0.00 5.33 5.32 4.44	(mol/kg) 5.81 6.02 5.50 6.16 5.48 5.53 5.46 0.00 6.01 5.93	(mol/l) 0.91 0.89 0.79 NA 0.84 0.78 0.76 0.70 0.78 0.78 0.78 0.77 0.77 0.76	(mol/kg) 1.02 1.00 0.89 0.94 0.88 0.86 0.78 0.87 0.87 0.86	(mol/l) 0.0143 0.0148 0.1526 0.1846 0.0152 0.0140 0.0181 0.0162 0.0170 0.0172 0.0152 0.0156 0.0186	(mol/kg) 0.0161 0.0167 0.1721 0.2082 0.0172 0.0158 0.0204 0.0183 0.0192 0.0194 0.0171 0.0176	-0.36 -0.07 0.68 0.68 0.63 0.64 0.56 0.81 0.73 0.58 0.60 0.37	1.71 1.71 1.62 1.58 1.37 2.01 1.48 1.51 0.82	1.03 1.03 0.99 0.94 0.81 1.20 0.90 0.91

Page s or 12
Plots.xis
Datasheet "Calculated molal

				_		-															
																			_		
				_	<u></u>	L	<u> </u>														
															T						
																					
																		-			
									ı		Į										

í			T				molarity to molality		A (pH correction		g							P1 51 1	N 21 1
i 1						log 0.04885684	coversion factor	H+ log gamma 1.0935	factor) 1.2060	ŀ	Cl- log gamma -0.2733		Mg++ log gamma 1.1803		aw 0.732274		Brucite log k 17.1090	Phase 5 log k 43.1900	Phase 3 log k 26.0297
· · · · · · · · · · · · · · · · · · ·						0.07,000,007			1,4										
ı								1				Cl	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Mg	Ca	Ca			
MgCL20-M	Collection Date	Time (day)	Not Used	pН	рсН	pmH	Cl concentration (mol/l)	(mol/kg)	Mg concentration (mol/l)	concentration (mol/kg)	concentration (mol/l)	concentration (mol/kg)	SI (brucite)	SI (phase-5)	SI (phase-3)				
MgCL20-M1	2/13/2007	7 7	NA NA	NA NA	NA NA	NA NA	NA NA	8.18	9.39	9.34	NA	(HONKS)	NA	(thot/kg)	0.0049	0.0055	31 (orucite)	BI (pitase-3)	Di (piause-3)
MgCL20-M1 MgCL20-M2	2/13/2007	7	NA NA	NA NA	NA NA	NA NA	NA NA	8.18	9.39	9.34	NA NA		NA NA		0.0045	0.0051			
MgCL20-M3	3/2/2007	24	NA.	NA	NA.	NA NA	NA NA	8,16	9.37	9.32	NA		0.82	0.92	0.0047	0.0053	0.21		
MgCL20-M4	3/2/2007	24	NA	NA	NA	NA	NA	8.18	9.39	9.34	NA		0.85	0.96	0.0048	0.0054	0.27		
MgCL20-M5	3/19/2007	41	NA	NA	NA	NA	NA	8.12	9.33	9.28	NA	•	0,66	0.74	0.0048	0.0054	0.04		
MgCL20-M6	3/19/2007	41	NA	NA	NA	NA	NA	8,13	9.34	9.29	NA NA		NA		0.0049	0.0055			
MgCL20-M7	3/28/2007	50	NA	NA	NA	NA	NA	8.10	9.31	9.26	5.54	6.20	NA.		0.0053	0.0060			ļ
MgCL20-M8	3/28/2007 4/16/2007	50 69	NA NA	NA NA	NA NA	NA NA	NA NA	8.09 8.11	9.30 9.32	9.25	6.07 NA	6.79	NA NA		0.0056	0.0062			
MgCL20-M9 (soak over night) MgCL20-M10	4/16/2007	69	NA NA	NA NA	NA NA	NA NA	NA NA	8.11	9.32	9.27	NA NA		NA NA		0.0053	0.0039			<u> </u>
MgCL20-M10 MgCL20-M11	5/30/2007	113	NA NA	NA NA	NA NA	NA NA	NA NA	8.09	9.30	9,25	5.39	6.03	NA NA		0.0059	0.0059			
MgCL20-M12	5/30/2007	113	NA NA	NA NA	NA.	NA NA	NA NA	8.13	9.34	9.29	5,55	6.21	NA NA		0,0050	0,0056			
MgCL20-M13	7/16/2007	160	NA.	NA	NA	NA	NA NA	8.13	9.34	9.29	5.99	6.70	0.90	1.01	0.0167	0.0187	0.19	0.67	0.48
MgCL20-M14	7/16/2007	160	NA	NA	NA	NA	NA	8.14	9.35	9.30	6.14	6.87	0.78	0.87	0.0169	0.0189	0.15	0,53	0.39
✓gC120M-15	8/23/2007	198	NA	NA	NA	NA	NA	8.17	9.38	9.33	4.57	5.12	0.96	1.07	0,0055	0.0061	0.30	0.82	0.53
MgC120M-16	8/23/2007	198	NA	NA	NA	NA	NA NA	8.18	9.39	9.34	4.86	5.44	1.03	1,15	0,0057	0.0063	0.35	1.00	0.65
MgC120M-17	12/11/2007	308	NA.	NA.	NA	NA	NA	8.19	9.40	9.35	5.91	6.61	1.10	1.23	0.0065	0.0073 0.0564	0.40	1.22	0.83
MgCt20M-18 MgCt20M19	12/11/2007 4/17/2008	308 436	NA NA	NA NA	NA NA	NA NA	NA NA	8.22 8.17	9.43 9.38	9.38 9.33	5.70 5.32	6.38 5.95	1.09	1.22	0.0504	0.0364	0.45	1.06	0.89
11gC120M20	4/17/2008	436	NA NA	NA NA	NA NA	NA NA	NA NA	8.16	9.36	9.33	5.20	5.82	1.08	1.21	0.0063	0.0069	0.33	0.99	0.66
	4/17/2008	430	NA NA	NA NA	NA.	NA NA	NA.	8.16	A(pH correction	9.32	3.20	3.82	1.08	1.21	0,0062	0,0009	0.33	0.99	0.00
								H+ log gonima	factor)		CI- log gomma		Mg++ log gomma		aw				
3								0.9825	1.2060		-0.2706		0.9747		0.752603		İ		
												Cl		Mg	Ca	Ca			
											CI concentration	concentration	Mg concentration	concentration	concentration	concentration	67.4 · · ·	67.1	
MgCL3-S	Collection Date	Time (day)	Not Used	pН	pcH	pmH	(mol/l)	(moł/kg)	(mol/l)	(mol/kg)	(mol/l)	(mol/kg)	SI (brucite)	SI (phase-5)	SI (phase-3)				
MgCL3-S1	2/13/2007 2/13/2007	7	NA NA	NA NA	NA NA	NA NA	NA NA	8.32 8.31	9,53 9,52	9.48 9.47	NA NA		NA NA		0.0307	0.0344			
MgCL3-S2 MgCL3-S3	3/2/2007	24	NA NA	NA NA	NA NA	NA NA	NA NA	8.34	9.55	9.47	5.65	6.33	NA NA		0.0318	0.0333			
MgCL3-S3	3/2/2007	24	NA NA	NA NA	NA NA	NA NA	NA NA	8.35	9.56	9.51	NA NA	0.33	0.60	0.67	0.0350	0.0392	0.49		
1gCL3-S5	3/19/2007	41	NA.	NA NA	NA NA	NA NA	NA NA	8.24	9.45			6.43		0.51	0,0000	0.0403	0.16	0.36	0.21
MgCL3-S6	3/19/2007								9.40	9.40	5.74	0.43	0.46	0.51	0.0360		0.16	0.36	
		41	NA	NA	NA	NA	NA NA	8.24	9.45	9.40 9.40	5.74 NA	6.43	0.36	0.40	0.0360	0.0403	0.16	0.36	0.21
MgCL3-S7	3/28/2007	41 50	NA NA	NA NA	NA NA	NA NA		8.24 8.25			NA 5.32	5.96			0,0360 0.0394			0.36	0,21
MgCL3-S8	3/28/2007 3/28/2007	50 50	NA NA	NA NA	NA NA	NA NA	NA NA NA	8.24 8.25 8.25	9,45 9,46 9,46	9.40 9.41 9.41	NA 5.32 5.17		0.36 NA NA		0.0360 0.0394 0.0405	0,0403 0,0441 0,0454		0.36	0.21
MgCL3-S8 Mgc L3-S9 (wet ground)	3/28/2007 3/28/2007 4/16/2007	50 50 69	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA NA	8.24 8.25 8.25 8.23	9.45 9.46 9.46 9.44	9.40 9.41 9.41 9.39	NA 5.32 5.17 NA	5.96	0.36 NA NA NA		0.0360 0.0394 0.0405 0.0433	0,0403 0,0441 0,0454 0,0485		0.36	0.21
MgCL3-S8 Mgc L3-S9 (wet ground) MgCL3-S10	3/28/2007 3/28/2007 4/16/2007 4/16/2007	50 50 69 69	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	8.24 8.25 8.25 8.23 8.23	9.45 9.46 9.46 9.44 9.44	9.40 9.41 9.41 9.39 9.39	NA 5.32 5.17 NA NA	5.96 5.79	0.36 NA NA NA NA		0.0360 0.0394 0.0405 0.0433 0.0501	0.0403 0.0441 0.0454 0.0485 0.0560		0.36	0.21
MgCL3-S8 Mgc L3-S9 (wet ground) MgCL3-S10 MgCL3-S11	3/28/2007 3/28/2007 4/16/2007 4/16/2007 5/30/2007	50 50 69 69 113	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA NA	8.24 8.25 8.25 8.23 8.23 8.21	9,45 9,46 9,46 9,44 9,44 9,42	9.40 9.41 9.41 9.39 9.39 9.37	NA 5.32 5.17 NA NA 5.20	5.96 5.79 5.82	0.36 NA NA NA NA NA		0.0360 0.0394 0.0405 0.0433 0.0501 0.0455	0.0403 0.0441 0.0454 0.0485 0.0560 0.0509		0.36	0.21
MgCL3-S8 Mgc L3-S9 (wet ground) MgCL3-S10 MgCL3-S11 MgCl3-S12	3/28/2007 3/28/2007 4/16/2007 4/16/2007 5/30/2007 5/30/2007	50 50 69 69 113 113	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA	8.24 8.25 8.25 8.23 8.23 8.21 8.21	9,45 9,46 9,46 9,44 9,44 9,42 9,42	9,40 9,41 9,41 9,39 9,39 9,37 9,37	NA 5.32 5.17 NA NA 5.20 5.18	5.96 5.79 5.82 5.80	0.36 NA NA NA NA NA NA	0.40	0.0360 0.0394 0.0405 0.0433 0.0501 0.0455 0.0470	0,0403 0,0441 0,0454 0,0485 0,0560 0,0509 0,0526	0,05		
MgCL3-S8 Mgc L3-S9 (wet ground) MgCL3-S10 MgCL3-S11 MgCl3-S12 NgCL3-S13	3/28/2007 3/28/2007 4/16/2007 4/16/2007 5/30/2007 5/30/2007 7/16/2007	50 50 69 69 113	NA NA NA NA NA NA	NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA	NA	8.24 8.25 8.25 8.23 8.23 8.21 8.21 8.32	9.45 9.46 9.46 9.44 9.44 9.42 9.42 9.53	9.40 9.41 9.41 9.39 9.39 9.37	NA 5.32 5.17 NA NA 5.20	5.96 5.79 5.82	0.36 NA NA NA NA NA		0.0360 0.0394 0.0405 0.0433 0.0501 0.0455	0.0403 0.0441 0.0454 0.0485 0.0560 0.0509		1.04	0.63
MgCL3-S8 Mgc L3-S9 (wet ground) MgCL3-S10 MgCL3-S11 MgCl3-S12	3/28/2007 3/28/2007 4/16/2007 4/16/2007 5/30/2007 5/30/2007	50 50 69 69 113 113	NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA NA	NA	8.24 8.25 8.25 8.23 8.23 8.21 8.21	9,45 9,46 9,46 9,44 9,44 9,42 9,42	9.40 9.41 9.41 9.39 9.39 9.37 9.37 9.48	NA 5.32 5.17 NA NA 5.20 5.18 5.65	5.96 5.79 5.82 5.80	0.36 NA NA NA NA NA NA NA	0.40	0.0360 0.0394 0.0405 0.0433 0.0501 0.0455 0.0470 0.0663	0,0403 0,0441 0,0454 0,0485 0,0560 0,0509 0,0526	0,05		
MgCL3-S9 MgC L3-S9 (wet ground) MgCL3-S10 MgCL3-S11 MgCl3-S11 MgCl3-S12 NgCL3-S13 NA	3/28/2007 3/28/2007 4/16/2007 4/16/2007 5/30/2007 5/30/2007 7/16/2007 NA	50 50 69 69 113 113 160	NA	NA	NA	NA	NA N	8.24 8.25 8.25 8.23 8.23 8.21 8.21 8.32 NA	9.45 9.46 9.46 9.44 9.44 9.42 9.42 9.53 NA	9.40 9.41 9.41 9.39 9.39 9.37 9.37 9.48 NA	NA 5.32 5.17 NA NA 5.20 5.18 5.65 NA	5.96 5.79 5.82 5.80 6.33	0.36 NA NA NA NA NA NA NA O.57	0.40	0.0360 0.0394 0.0405 0.0433 0.0501 0.0455 0.0470 0.0663 NA	0.0403 0.0441 0.0454 0.0485 0.0560 0.0509 0.0526 0.0742	0.05	1.04	0.63
MgCL3-S8 Mgc L3-S9 (wet ground) MgCL3-S10 MgCL3-S11 MgCl3-S12 NgCL3-S13 NA MgCl3-S15 MgCl3-S16 MgCl3-S16 MgCl3-S16	3/28/2007 3/28/2007 4/16/2007 4/16/2007 5/30/2007 5/30/2007 7/16/2007 NA 8/23/2007 12/11/2007	50 50 69 69 113 113 160 198 198	NA N	8.24 8.25 8.25 8.23 8.23 8.21 8.21 8.32 NA 8.28 8.28 8.28	9.45 9.46 9.44 9.44 9.42 9.42 9.53 NA 9.49 9.49	9.40 9.41 9.41 9.39 9.39 9.37 9.37 9.48 NA 9.44 9.44 9.31	NA 5.32 5.17 NA NA 5.20 5.18 5.65 NA 5.51 5.51 5.52	5.96 5.79 5.82 5.80 6.33 6.17 5.85 6.20	0.36 NA NA NA NA NA NA O.57 NA 0.76 0.75	0.40 0.64 0.85 0.84	0.0360 0.0394 0.0405 0.0433 0.0501 0.0455 0.0470 0.0663 NA 0.0539 0.0531	0.0403 0.0441 0.0454 0.0485 0.0560 0.0509 0.0526 0.0742 0.0604 0.0594	0.05 0.41 0.46 0.45 0.19	1.04 1.20 1.17 0.54	0.63 0.75 0.72 0.35				
MgCL3-S8 (wet ground) MgCL3-S10 MgCL3-S11 MgCl3-S12 NgCL3-S13 NA MgCl3-S15 MgCl3-S15 MgCl3-S16 MgCl3-S16 MgCl3-S16	3/28/2007 3/28/2007 4/16/2007 4/16/2007 5/30/2007 5/30/2007 7/16/2007 NA 8/23/2007 8/23/2007 12/11/2007	50 50 69 69 113 113 160 198 198 308 308	NA N	NA	NA N	NA N	NA N	8.24 8.25 8.25 8.23 8.23 8.21 8.21 8.32 NA 8.28 8.28 8.15	9.45 9.46 9.44 9.44 9.42 9.42 9.53 NA 9.49 9.49 9.36 9.35	9.40 9.41 9.41 9.39 9.37 9.37 9.48 NA 9.44 9.44 9.31 9.30	NA 5.32 5.17 NA NA 5.20 5.18 5.65 NA 5.51 5.52 5.54 5.64	5.96 5.79 5.82 5.80 6.33 6.17 5.85 6.20 6.31	0.36 NA NA NA NA NA NA O.57 NA 0.76 0.75 0.75	0.40 0.64 0.85 0.84 0.88	0.0360 0.0394 0.0405 0.0433 0.0501 0.0475 0.0470 0.0663 NA 0.0539 0.0531 0.0502	0.0403 0.0441 0.0454 0.0485 0.0560 0.0509 0.0526 0.0742 0.0594 0.0594 0.0561	0.05 0.41 0.46 0.45 0.19 0.19	1.04 1.20 1.17 0.54 0.56	0.63 0.75 0.72 0.35 0.37
MgCL3-S8 MgG-3-S10 (wet ground) MgCL3-S10 MgCl3-S11 MgCl3-S12 NgCl3-S13 NA MgCl3-S15 MgCl3-S16 MgCl3-S16 MgCl3-S16 MgCl3-S17 igCl3-S18 MgCl3-S19	3/28/2007 3/28/2007 4/16/2007 4/16/2007 5/30/2007 5/30/2007 7/16/2007 NA 8/23/2007 8/23/2007 12/11/2007 4/17/2008	50 50 69 69 113 113 160 198 308 308 436	NA N	NA N	NA N	NA N	NA	8.24 8.25 8.25 8.23 8.21 8.21 8.32 NA 8.28 8.28 8.15 8.14	9.45 9.46 9.44 9.44 9.42 9.42 9.53 NA 9.49 9.49 9.36 9.35	9.40 9.41 9.41 9.39 9.37 9.37 9.48 NA 9.44 9.44 9.31 9.30 9.32	NA 5.32 5.17 NA NA 5.20 5.18 5.65 NA 5.51 5.22 5.54 5.64 5.36	5.96 5.79 5.82 5.80 6.33 6.17 5.85 6.20 6.31 6.00	0.36 NA NA NA NA NA NA O.57 NA 0.76 0.75 0.75	0.40 0.64 0.85 0.84 0.84 0.88 0.96	0.0360 0.0394 0.0405 0.0433 0.0501 0.0455 0.0470 0.0663 NA 0.0539 0.0531 0.0502 0.0057	0.0403 0.0441 0.0454 0.0485 0.0560 0.0509 0.0526 0.0742 0.0604 0.0594 0.0561	0.05 0.41 0.46 0.45 0.19 0.19	1.04 1.20 1.17 0.54 0.56 0.75	0.63 0.75 0.72 0.35 0.37 0.48
MgCL3-S8 Mgc L3-S9 (wet ground) MgCL3-S10 MgCL3-S11 MgCl3-S12 NgCl3-S12 NA MgCl3-S15 MgCl3-S15 MgCl3-S16 MgCl3-S16 MgCl3-S17 1gCl3-S18 MgCl3-S19 MgCl3-S19	3/28/2007 3/28/2007 4/16/2007 4/16/2007 5/30/2007 5/30/2007 7/16/2007 NA 8/23/2007 8/23/2007 12/11/2007 4/17/2008 4/17/2008	50 50 69 69 113 116 160 198 308 308 308 436	NA N	NA	NA N	NA N	NA	8.24 8.25 8.25 8.23 8.23 8.21 8.21 8.32 NA 8.28 8.28 8.15 8.14 8.19	9.45 9.46 9.44 9.44 9.42 9.42 9.53 NA 9.49 9.49 9.36 9.35 9.37 9.40	9.40 9.41 9.41 9.39 9.39 9.37 9.48 NA 9.44 9.44 9.31 9.30 9.32 9.35	NA 5.32 5.17 NA NA 5.20 5.18 5.65 NA 5.51 5.51 5.22 5.54 5.64 5.64	5.96 5.79 5.82 5.80 6.33 6.17 5.85 6.20 6.31 6.00 6.04	0.36 NA NA NA NA NA NA 0.57 NA 0.76 0.75 0.75 0.79	0.40 0.64 0.85 0.84 0.88 0.96 0.91	0.0360 0.0394 0.0405 0.0433 0.0501 0.0455 0.0470 0.0663 NA 0.0539 0.0539 0.0531 0.0502 0.0057 0.0057	0.0403 0.0441 0.0454 0.0485 0.0560 0.0509 0.0526 0.0742 0.0604 0.0594 0.0561 0.0064 0.0574	0.05 0.41 0.46 0.45 0.19 0.19 0.27 0.30	1.04 1.20 1.17 0.54 0.56 0.75 0.83	0.63 0.75 0.72 0.35 0.37 0.48 0.52
MgCL3-S8 Mg L3-S9 (wet ground) MgCL3-S10 MgCl3-S11 MgCl3-S12 NgCl3-S13 NA MgCl3-S15 MgCl3-S16 MgCl3-S16 MgCl3-S16 MgCl3-S17 igCl3-S18 MgCl3-S18	3/28/2007 3/28/2007 4/16/2007 4/16/2007 5/30/2007 5/30/2007 7/16/2007 NA 8/23/2007 8/23/2007 12/11/2007 4/17/2008	50 50 69 69 113 113 160 198 308 308 436	NA N	NA N	NA N	NA N	NA	8.24 8.25 8.25 8.23 8.21 8.21 8.32 NA 8.28 8.28 8.15 8.14	9.45 9.46 9.44 9.44 9.42 9.42 9.53 NA 9.49 9.49 9.36 9.35	9.40 9.41 9.41 9.39 9.37 9.37 9.48 NA 9.44 9.44 9.31 9.30 9.32	NA 5.32 5.17 NA NA 5.20 5.18 5.65 NA 5.51 5.22 5.54 5.64 5.36	5.96 5.79 5.82 5.80 6.33 6.17 5.85 6.20 6.31 6.00	0.36 NA NA NA NA NA NA O.57 NA 0.76 0.75 0.75	0.40 0.64 0.85 0.84 0.84 0.88 0.96	0.0360 0.0394 0.0405 0.0433 0.0501 0.0455 0.0470 0.0663 NA 0.0539 0.0531 0.0502 0.0057	0.0403 0.0441 0.0454 0.0485 0.0560 0.0509 0.0526 0.0742 0.0604 0.0594 0.0561	0.05 0.41 0.46 0.45 0.19 0.19	1.04 1.20 1.17 0.54 0.56 0.75	0.63 0.75 0.72 0.35 0.37 0.48

Constants: Molarity to molality conversion factor for simplified GWB in cell CF5 can be found in Excel file "MgO in brine", data sheet "SGWB" For the H+ log gamma in CG5 or CG29 see the explanation section of worksheet "Fig 32" of this Excel file The pH correction factor A in cell CH5 can be found in the Excel file "Brine acid base titration", worksheet "sum" For the Cl- log gamma in CJ5/29 see the explanation section of worksheet "Fig 32" of this Excel file For the Mg++ log gamma in CL5/29 see the explanation section of worksheet "Fig 32" of this Excel file. For the activity of water (aw) in CN5/29 see the explanation section of worksheet "Fig 32" of this Exect file. log k for brucite in cell CP5 = 17.1090 log k for phase-5 in cell CQ5 = 43.19 log k for phase-3 in cell CR5 = 26.0297 These Log K's can be found in the EQ3/6 database: data0.hmo, and in the memo: Xiong et al., 2009 Calculation: Time in column CA = collection date in column BZ - starting date in cell A6 (data in column BZ and cell A6 can be found in WIPP-MMMgO-5, p60-71) Columns CB through CF are not used in the report pH in column CG can be found in notebook WIPP-MMMgO-5, p60-71. pcH in column CH = pH in column CG + A (pH correction factor) in Cell CH5 pmH in column CI = pcH in column CH + log (molarity to molality conversion factor in Cell F5) CI concentration (mole/l) in column CJ can be found in Excel file "CI analysis", column D. Cl concentration (mol/kg) in column CK = Cl concentration (mol/l) in column CJ x molar conversion factor in cell CF5 Mg concentration (mol/l) in column CL can be found in excel file "ICP-AES" column G. Mg concentration (mol/kg) in column CM = Mg concentration (mol/l) in column CL x molar conversion factor in cell CF5 Ca concentration (mol/l) in column CN can be found in excel file "ICP-AES" column H. Ca concentration (mol/kg) in column CO = Ca concentration (mol/l) in column CN x molar conversion factor in cell CF5 SI of brucite in column P = equation 8 in report - log k of brucite "=log (Mg concentration in column CM)+ Mg log gamma in cell CL5/29 + 2 pmH in column CI-2 H log gamma in cell CG5/29 + 2 log aw in cell CN5 - log k of brucite in cell CP5 SI of phase-5 in column CQ = equation 6 in report - log k of phase-5 "=3 log (Mg concentration mol/kg in column CM)+3 Mg log gamma in cell CL5/29+5 pmH in column CI "- 5 H log gamma in cell CG5/29+ 9 log aw in cell CN5/29" + log (Cl concentration in column CK) + Cl log gamma in cell C15/29 - log k of phase-5 in cell CQ5*

SI of phase-3 in column Q = equation 6 in report -long k of phase-3

= 2 log (Mg concentration in column CM)+ 2 Mg log gamma in cell CL5/29 + 3 pmH in column Cl
- 3 H log gamma in cell CG5/29 + 7 log aw in cell CN5/29
+ log (Cl concentration in column CK) + Cl log gamma in cell CJ5/29 - log k of phase-3 in cell CR5*

	1																					
2	İ							ľ											1	}		1
	 	 	1		1											····			 		 	
			1						1					i				Ca	İ			1
	1		l	Not	Not	Not		l								Mg concentration		concentration	Ca concentration	l		
MgCL20-L	Collection Date			Used	Used		Not Used	_	Not Used	Not Used	pΗ	рcН	pmH	(mol/i)	(mol/kg)	(mol/l)	(mol/kg)	(mol/l)	(mol/kg)	SI (brucite)	SI (phase-5)	SI (phase-
MgCL20-L1	2/13/2007	7	NA	NA	NA	NA	NA	NA	NA	NA NA	8.21	9.42	9.37	NA		NA		0.0045	0.0050			
MgCL20-L2	2/13/2007	7	NA	NA	NA		NA	NA	NA	NA.	8.25	9.46	9.41	NA		NA		0.0066	0.0074			
MgCL20-L3	3/2/2007	24	NA.	NA	NA		NA	NA	NA.	NA.	8.11	9.32	9.27	NA NA		0.87	0.98	0.0047	0.0052	0.14		
MgCL20-L4 MgCL20-L5	3/2/2007 3/19/2007	24	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA.	8.17 8.12	9.38 9.33	9.33	NA.	 	0.87 0.77	0.98	0.0045	0.0050	0.26		
MgCL20-L5	3/19/2007	41	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	8.09	9.33	9.28 9.25	NA NA	 	0.68	0.76	0.0045	0.0051	-0.01		
MgCL20-L0	3/28/2007	50	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	8.12	9.33	9.23	5.47	6.12	NA	0.76	0.0046	0.0062	-0.01	ł	_
MgCL20-L7	3/28/2007	50	NA NA	NA.	NA.	NA	NA NA	NA NA	NA NA	NA NA	8.14	9.35	9,30	5,19	5.81	NA NA		0.0050	0.0056		! 	
MgCL20-L9(wet ground)	4/16/2007	69	NA NA	NA.	NA	NA	NA NA	NA NA	NA NA	NA NA	8.11	9.32	9.27	NA NA	3,01	NA NA		0.0052	0.0058		 	+
MgCL20-L10	4/16/2007	69	NA NA	NA.	NA	NA	NA	NA.	NA:	NA.	8.08	9.29	9.24	NA NA	i	NA NA	İ	0.0052	0.0059			
MgCL20-L11	5/30/2007	113	NA NA	NA.	NA.	NA.	NA NA	NA.	NA NA	NA NA	8.09	9.30	9.25	5.62	6.29	NA NA		0.0054	0.0060			
MgCL20-L12	5/30/2007	113	NA.	NA.	NA.	NA	NA	NA.	NA.	NA NA	8.11	9.32	9.27	5.28	5.90	NA NA		0.0054	0.0059			
MgCL20-L13	7/16/2007	160	NA	NA	NA	NA	NA	NA	NA	NA	8.12	9.33	9.28	5.94	6.65	0.93	1.04	0.0169	0.0189	0.19	0.66	0.47
MgCL20-L14	7/16/2007	160	NA	NA	NA	NA	NA	NA	NA	NA	8,07	9.28	9.23	5.94	6.65	0.88	0.99	0.0171	0.0191	0.06	0.34	0.28
MgCL20-L15	8/23/2007	198	NA	NA	NA	NA	NA	NA	NA	NA	8.15	9.36	9.31	5.27	5.89	1.24	1.39	0.0060	0.0067	0.37	1.12	0.76
CL20-L16	8/23/2007	198	NA	NA	NA	NA	NA	NA	NA	NA	8.14	9.35	9.30	5.31	5.94	1.16	1.30	0.0063	0.0071	0.32	0.99	0.67
MgCL20-L17	12/11/2007	308	NA	NA	NA	NA	NA	NA	NA	NA	8.15	9.36	9.31	5.58	6.24	1.12	1.25	0.0060	0.0067	0.33	1.02	0.70
MgCL20-L18	12/11/2007	308	NA	NA	NA	NA	NA	NA	NA	NA	8.14	9.35	9.30	5.65	6.32	1.12	1.25	0.0053	0.0059	0.31	0.97	0.67
MgCL20-L19	4/17/2008	436	NA	NA	NA	NA	NA	NA	NA	NA	8.15	9.36	9.31	5,35	5.99	1,15	1.29	0.0062	0,0070	0.34	1.03	0.70
CL20-L20	4/17/2008	436	NA	NA	NA	NA	NA	NA	ΝA	NA	8.16	9.37	9.32	5.51	6.17	1.14	1.27	0.0058	0.0065	0.35	1.08	0.73
4.																						
					l	l					1							Ca				l
MgCL3-M	Collection Date	Time (day)		.	Not	Not	l				l l					Mg concentration		concentration	Ca concentration	ara in		07.43
		. (,/		Not used			Not used	Not used	Not used	Not used	pН	рсН	pmH	(mol/l)	(mol/kg)	(mol/l)	(mol/kg)	(mol/l)	(mol/kg)	SI (brucite)	SI (phase-5)	SI (phase-
MgCL3-M1 MgCL3-M2	2/13/2007 2/13/2007	7 7	NA NA	NA		NA	NA.	NA	NA	NA.	8.25	9.46	9.41	NA NA	ļ	NA.		0.03	0.04			
	3/2/2007	24	NA NA	NA	NA	NA	NA NA	NA	NA	NA.	8.24	9.45	9.40	NA NA	(22	NA 0.71	0.00	0.03	0.04	0.12	1.12	0.70
MgCL3-M3 MgCL3-M4	3/2/2007	24	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	8.28 8.29	9.49	9.44 9.45	5.57 5.33	6.23 5.96	0.71 0.74	0.80	0.03	0.04 0.04	0.43 0.47	1.13	0.70
MgCL3-M4	3/19/2007	41	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	8.18	9.39	9.43	3.33 NA	3.96	0.74	0.59	0.03	0.04	0.10	1.21	0.73
MgCL3-M5	3/19/2007	41	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	8.17	9.39	9.33	NA NA		0.50	0.59	0.03	0.04	0.10		
MgCL3-M7	3/28/2007	50	NA NA	NA	NA.	NA	NA.	NA NA	NA NA	NA NA	8.20	9.41	9.36	5.21	5.83	NA	0.50	0.03	0.04	0.00		
MgCL3-M7	3/28/2007	50	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	8.17	9.38	9.33	5.16	5.77	NA NA		0.04	0.05		l	†
MgCL3-M9	4/16/2007	69	NA.	NA	NA	NA	NA NA	NA	NA NA	NA NA	8.16	9.37	9.32	NA.	5.17	0.69	0.78	0.05	0.05	0.18	 	
			NA	NA	NA	NA	NA	NA	NA NA	NA NA	8.16	9.37	9.32	NA NA		0.63	0.71	0.04	0.05	0.14		1
MIRCES-MID		1 69											9,32		5.00	0.65	0.73	0.05	0.05		0.39	0.24
MgCL3-M10 MgCL3-M11	4/16/2007 5/30/2007	69 113		NA	NA	NA	NA.	NA	NA I	NA NA	1 8.16 1	9.37	9.32	3.23	5.88				1 0.05	0.15		
	4/16/2007		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	8.16 8.16	9.37 9.37	9.32	5.25 5.45	6.10	0.69	0.77	0.05	0.05	0.15 0.17	0.39	0.30
MgCL3-M11	4/16/2007 5/30/2007	113	NA -																			
MgCL3-M11 MgCL3-M12	4/16/2007 5/30/2007 5/30/2007	113 113	NA NA	NA	NA	NA	NA	NA	NA	NA	8.16	9.37	9.32	5.45	6.10	0.69	0.77	0.05	0.06	0.17	0.47	0.30
MgCL3-M11 MgCL3-M12 CL3-M13	4/16/2007 5/30/2007 5/30/2007	113 113	NA NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	8.16 8.26	9.37 9.47	9.32 9.42	5.45 9.78 NA 5.47	6.10	0.69	0.77	0.05 0.06	0.06	0.17	0.47	0.30
MgCL3-M11 MgCL3-M12 CL3-M13 NA	4/16/2007 5/30/2007 5/30/2007 7/16/2007	113 113 160	NA NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	8.16 8.26 NA	9.37 9.47 NA	9.32 9.42 NA	5.45 9.78 NA	6.10 10.94	0.69 0.67 NA	0.77 0.75	0.05 0.06 NA	0.06 0.07	0.17 0.36	0.47 1.19	0.30 0.83
MgCL3-M11 MgCL3-M12 *CL3-M13 NA .gCL3-M15 MgCL3-M16 MgCL3-M17	4/16/2007 5/30/2007 5/30/2007 7/16/2007 8/23/2007	113 113 160	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	8.16 8.26 NA 8.26	9.37 9.47 NA 9.47	9.32 9.42 NA 9.42	5.45 9.78 NA 5.47	6.10 10.94 6.12	0.69 0.67 NA 0.85	0.77 0.75 0.95	0.05 0.06 NA 0.05	0.06 0.07	0.17 0.36 0.46	0.47 1.19	0.30 0.83 0.78
MgCL3-M11 MgCL3-M12 CL3-M13 NA .gCL3-M15 MgCL3-M16	4/16/2007 5/30/2007 5/30/2007 7/16/2007 8/23/2007 8/23/2007	113 113 160 198 198	NA NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA NA	NA NA NA NA	NA NA NA NA NA	8.16 8.26 NA 8.26 8.26	9.37 9.47 NA 9.47 9.47	9.32 9.42 NA 9.42 9.42	5.45 9.78 NA 5.47 5.34	6.10 10.94 6.12 5.97	0.69 0.67 NA 0.85 0.86	0.77 0.75 0.95 0.96	0.05 0.06 NA 0.05 0.05	0.06 0.07 0.06 0.06	0.17 0.36 0.46 0.47	0.47 1.19 1.24 1.25	0.30 0.83 0.78 0.78
MgCL3-M11 MgCL3-M12 CL3-M13 NA .gCL3-M15 MgCL3-M16 MgCL3-M16	4/16/2007 5/30/2007 5/30/2007 7/16/2007 8/23/2007 8/23/2007 12/11/2007	113 113 160 198 198 308	NA NA NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA NA	8.16 8.26 NA 8.26 8.26 8.19	9.37 9.47 NA 9.47 9.47 9.40	9.32 9.42 NA 9.42 9.42 9.35	5.45 9.78 NA 5.47 5.34 5.47	6.10 10.94 6.12 5.97 6.12	0.69 0.67 NA 0.85 0.86 0.85	0.77 0.75 0.95 0.96 0.95	0.05 0.06 NA 0.05 0.05	0.06 0.07 0.06 0.06 0.06	0.17 0.36 0.46 0.47 0.32	0.47 1.19 1.24 1.25 0.89	0.30 0.83 0.78 0.78 0.57
MgCL3-M11 MgCL3-M12 CL3-M13 NA .gCL3-M15 MgCL3-M16 MgCL3-M17 MgCL3-M17	4/16/2007 5/30/2007 5/30/2007 7/16/2007 8/23/2007 8/23/2007 12/11/2007	113 113 160 198 198 308 308	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	8.16 8.26 NA 8.26 8.26 8.19 8.22	9.37 9.47 NA 9.47 9.47 9.40 9.43	9.32 9.42 NA 9.42 9.42 9.35 9.38	5.45 9.78 NA 5.47 5.34 5.47 5.43	6.10 10.94 6.12 5.97 6.12 6.07	0.69 0.67 NA 0.85 0.86 0.85	0.77 0.75 0.95 0.96 0.95 0.92	0.05 0.06 NA 0.05 0.05 0.05	0.06 0.07 0.06 0.06 0.06 0.05	0.17 0.36 0.46 0.47 0.32 0.37	0.47 1.19 1.24 1.25 0.89 1.00	0.30 0.83 0.78 0.78 0.57 0.63
MgCL3-M11 MgCL3-M12 CL3-M13 NA gCL3-M15 MgCL3-M16 MgCL3-M16 MgCL3-M17 MpCL3-M18 MgCl3-M19	4/16/2007 5/30/2007 5/30/2007 7/16/2007 8/23/2007 8/23/2007 12/11/2007 12/11/2007 4/17/2008	113 113 160 198 198 198 308 308 436	NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	8.16 8.26 NA 8.26 8.26 8.19 8.22 8.16	9.37 9.47 NA 9.47 9.47 9.40 9.43 9.37	9.32 9.42 NA 9.42 9.42 9.35 9.38 9.32	5.45 9.78 NA 5.47 5.34 5.47 5.43 5.39	6.10 10.94 6.12 5.97 6.12 6.07 6.03	0.69 0.67 NA 0.85 0.86 0.85 0.82	0.77 0.75 0.95 0.96 0.95 0.92 1.02	0.05 0.06 NA 0.05 0.05 0.05 0.05 0.05	0.06 0.07 0.06 0.06 0.06 0.05 0.05	0.17 0.36 0.46 0.47 0.32 0.37 0.30	0.47 1.19 1.24 1.25 0.89 1.00 0.83	0.30 0.83 0.78 0.78 0.57 0.63 0.54
MgCL3-M11 MgCL3-M12 CL3-M13 NA .gCL3-M15 MgCL3-M16 MgCL3-M17 MgCL3-M18 vigCl3-M19 MgCl3-M20	4/16/2007 5/30/2007 5/30/2007 7/16/2007 8/23/2007 8/23/2007 12/11/2007 12/11/2007 4/17/2008	113 113 160 198 198 308 308 436 436	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA	8.16 8.26 NA 8.26 8.26 8.19 8.22 8.16 8.19	9.37 9.47 NA 9.47 9.47 9.40 9.43 9.37 9.40	9.32 9.42 NA 9.42 9.42 9.35 9.38 9.32 9.35	5.45 9.78 NA 5.47 5.34 5.47 5.43 5.49 5.49	6.10 10.94 6.12 5.97 6.12 6.07 6.03 6.05	0.69 0.67 NA 0.85 0.86 0.85 0.82 0.91	0.77 0.75 0.95 0.96 0.95 0.92 1.02 0.95	0.05 0.06 NA 0.05 0.05 0.05 0.05 0.05 0.05	0.06 0.07 0.06 0.06 0.06 0.05 0.06 0.06	0.17 0.36 0.46 0.47 0.32 0.37 0.30 0.33	0.47 1.19 1.24 1.25 0.89 1.00 0.83 0.89	0.30 0.83 0.78 0.78 0.57 0.63 0.54 0.57

Page 12 of 12
Plots.xls
Datasheet "Calculated molality"

Sa	ample name (dilution factor)	CI concentration (ppm)	CI concentration (mol/l)	Analysis Date	Scientific Notebook and pg.
1					
2					
3 EF	R20M3 (1:10000)	15.5238	4.38	7/1/2008	Wipp-mmmgo-11, p15
4 EF	R20M4 (1:10000)	15.44	4.36	7/1/2008	Wipp-mmmgo-11, p15
5 EF	R20M5 (1:10000)	17.1338	4.83	7/14/2008	Wipp-mmmgo-11, p22
6 Er	R20M6 (1:10000)	16.7456	4.72	7/14/2008	Wipp-mmmgo-11, p22
	R20M7 (1:10000)	16.5761	4.68	7/1/2008	Wipp-mmmgo-11, p15
	R20M8 (1:10000)	16.2326	4.58		Wipp-mmmgo-11, p24
	R20M9 (1:10000)	18.0129	5.08		Wipp-mmmgo-11, p27
	R20M10 (1:10000)	15,3391	4.33	7/23/2008	Wipp-mmmgo-11, p27
	R20M11 (1:10000)	16.6301	4.69		
	R20M12 (1:10000)	16.5533	4.67		
13		<u> </u>	SE 35 15 15 15 15		
	R20M14(1:10000)	15.4764	4.37	6/23/2008	Wipp-mmmgo-11, p15
15	(2011) (1.10000)		2000 Par 17 - 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		, , , , , , , , , , , , , , , , , , ,
16					***************************************
,01		-L			1
le:	R20M11 (1:10000)	17.0534	4.81	7/3/2008	Wipp-mmmgo-11, p19
	R20M11 (1:10000)	16.2069	4.57		Wipp-mmmgo-11, p31
	R20M12 (1:10000)	16.9747	4.79		Wipp-mmmgo-11, p19
	R20M12 (1:10000)	16.1320	4.55		Wipp-mmmgo-11, p31
[2]	(2010112 (1.10000)	10.1020	7.50	01-112000	[VVIPP-IIIIIIIgo-11, pol
11		1	ROSE TO THE ROSE OF THE ROSE O	r	
2					
3		 			
4					
5					
6	20007 (4.40000)	40 4440	4.54	7/16/2009	Mina manage 44 n22
	R20S7 (1:10000)	16.1112	4.54		Wipp-mmmgo-11, p23
	R20S8 (1:10000)	15.3980	4,34	7/16/2008	Wipp-mmmgo-11, p23
9		ļ			-
10	***				
	R20S11 (1:10000)	15.9946	4.51		Wipp-mmmgo-11, p25
	R20S12 (1:10000)	15.8960	4.48		Wipp-mmmgo-11, p25
	R20S13 (1:10000)	16.0836	4.54		Wipp-mmmgo-11, p27
	R20S14 (1:10000)	14.6220	4.12	7/23/2008	Wipp-mmmgo-11, p27
15 El	R20S15 (1:10000)	16.5560	4.67		
16 E	R20S16 (1:10000)	16.7132	4.71		
17 E	R20S17(1:10000)	15.6392	4.41	6/23/2008	Wipp-mmmgo-11, p15
	R20S18 (1:10000)	15.4919	4.37	6/23/2008	Wipp-mmmgo-11, p15
					-
ĪΕΙ	R20S16 (1:10000)	17.0355	4.81	7/7/2008	Wipp-mmmgo-11, p20
	R20S16 (1:10000)	16.3910	4.62	7/31/2008	Wipp-mmmgo-11, p30
	R20S15 (1:10000)	17.0840	4.82		Wipp-mmmgo-11, p20
	R20S15 (1:10000)	16.0281	4.52		Wipp-mmmgo-11, p30
L=				,	, , , , , , , , , , , , , , , , , , , ,
1		-	Wild VIII	-	
2			Mark 14		
	P3I 3 (1:10000)	16.4446	4.64	7/9/2008	Wipp-mmmgo-11, p21
	R3L3 (1:10000)		- NAPENZERNENSCH 1888/FAST		
	R3L4 (1:10000)	16.7268	4.72		Wipp-mmmgo-11, p21
	R3L5 (1:10000)	17.8658	5.04		Wipp-mmmgo-11, p22
	R3L6 (1:10000)	17.5376	4,95		Wipp-mmmgo-11, p22
	R3L7 (1:10000)	17.7174	5.00		Wipp-mmmgo-11, p15
	R3L8 (1:10000)	19.5652	5.52		Wipp-mmmgo-11, p23
9 E	R3L9 (1:10000)	17.8458	5.03		Wipp-mmmgo-11, p32
10 E	R3L10 (1:10000)	17.0809	4.82	8/5/2008	Wipp-mmmgo-11, p32

1		7.25		
2		10 to 10 to		
3	ER3M3 (1:10000)	7.82135772	2.21	
4	ER3M4 (1:10000)	17.0402	4.81	7/9/2008 Wipp-mmmgo-11, p21
5	ER3M5 (1:10000)	17.8710	5.04	7/9/2008 Wipp-mmmgo-11, p21
6	ER3M6 (1:10000)	17.7160	5,00	7/9/2008 Wipp-mmmgo-11, p21
7	ER3M7 (1:10000)	15.8032	4.46	7/16/2008 Wipp-mmmgo-11, p23
8	ER3M8 (1:10000)	15.5885	4.40	7/16/2008 Wipp-mmmgo-11, p23
9	ER3M9 (1:10000)	16.0223	4.52	8/5/2008 Wipp-mmmgo-11, p32
10	ER3M10 (1:10000)	17.9236	5,06	8/5/2008 Wipp-mmmgo-11, p32
1				
2				
3	GW20L3 (1:10000)	18.4989	5.22	7/1/2008 Wipp-mmmgo-11, p15
4	GW20L4(1:10000)	33.4494	9.43	7/1/2008 Wipp-mmmgo-11, p15
5	GW20L5 (1:10000)	20.1066	5.67	7/14/2008 Wipp-mmmgo-11, p22
6	GW20L6(1:10000)	20.0790	5.66	7/14/2008 Wipp-mmmgo-11, p22
7	GW20L7 (1:10000)	18.1133	5.11	7/16/2008 Wipp-mmmgo-11, p23
8	GW20L8 (1:10000)	18.1262	5.11	7/16/2008 Wipp-mmmgo-11, p23
9	GW20L9 (1:10000)	16.6102	4.69	7/22/2008 Wipp-mmmgo-11, p26
10	GW20L10 (1:10000)	17.9887	5.07	7/22/2008 Wipp-mmmgo-11, p26
11 12	GW20L11 (1:10000) GW20L12 (1:10000)	16.3884 17.6949	4.62 4.99	8/5/2008 Wipp-mmmgo-11, p32 8/5/2008 Wipp-mmmgo-11, p32

. 1	조명화 보는 취임 수	- 5			
2		<u> </u>			
3	GW20M3 (1:10000)	17.4615	4.93		Wipp-mmmgo-11, p15
4	GW20M4(1:10000)	17.8194	5.03	7/1/2008	Wipp-mmmgo-11, p15
5	GW20M5 (1:10000)	18.9309	5.34	7/14/2008	Wipp-mmmgo-11, p22
6	GW20M6 (1:10000)	17.7542	5.01	7/16/2008	Wipp-mmmgo-11, p23
7	GW20M7 (1:10000)	17.6925	4.99	7/16/2008	Wipp-mmmgo-11, p23
8	GW20M8 (1:10000)	17.9596	5.07	7/17/2008	Wipp-mmmgo-11, p24
9	GW20M9 (1:10000)	18.1227	5.11	7/22/2008	Wipp-mmmgo-11, p26
10	GW20M10 (1:10000)	17.7733	5.01		
11	GW20M11 (1:10000)	18.7197	5.28	8/5/2008	Wipp-mmmgo-11, p32
12	GW20M12 (1:10000)	17.8240	5.03	8/5/2008	Wipp-mmmgo-11, p32
		47.4570	4.00	7/00/0000	14. 67
	GW2M10 (1:10000)	17.4570	4.92		Wipp-mmmgo-11, p27
	GW20M10 (1:10000)	18.0896	5.10	//22/2008	Wipp-mmmgo-11, p26

1				
2		1.0		
3	GW3M3 (1:10000)	18,2818	5.16	7/9/2008 Wipp-mmmgo-11, p21
4	GW3M4 (1:10000)	18.9154	5.34	7/9/2008 Wipp-mmmgo-11, p21
5	GW3M5 (1:10000)	17.2814	4.87	7/16/2008 Wipp-mmmgo-11, p23
6	GW3M6 (1:10000)	19.3610	5.46	7/14/2008 Wipp-mmmgo-11, p22
7	GW3M7 (1:10000)	17.2170	4.86	7/16/2008 Wipp-mmmgo-11, p23
8	GW3M8 (1:10000)	17.3778	4.90	7/16/2008 Wipp-mmmgo-11, p23
9	GW3M9 (1:10000)	17.1791	4.85	7/23/2008 Wipp-mmmgo-11, p27
10		15 A. S.		
11	GW3M11 (1:10000)	18.9136	5.33	
12	GW3M12 (1:10000)	18.6620	5.26	
13	GW3M13 (1:10000)	15.7262	4.44	6/23/2008 Wipp-mmmgo-11, p15
14	GW3M14 (1:10000)	20.9853	5.92	6/23/2008 Wipp-mmmgo-11, p15
	GW3M11 (1:10000)	19.0256	5.37	7/3/2008 Wipp-mmmgo-11, p19
	GW3M11 (1:10000)	18.8017	5.30	8/4/2008 Wipp-mmmgo-11, p31
	GW3M12 (1:10000)	18.8431	5.32	7/3/2008 Wipp-mmmgo-11, p19
	GW3M12 (1:10000)	18.4809	5.21	8/4/2008 Wipp-mmmgo-11, p31

1			
2			
3	GW3S3 (1:10000) 11.76	45 3.32	7/22/2008 Wipp-mmmgo-11, p26
4	GW3S4 (1:10000) 11.79	85 3.33	7/9/2008 Wipp-mmmgo-11, p21
5	•		
6		Pribation.	
7	GW3S7 (1:10000) 19.409	5.47	7/1/2008 Wipp-mmmgo-11, p15
8	GW3S8 (1:10000) 18.33	68 5.17	7/17/2008 Wipp-mmmgo-11, p24
9			
10			1
11	GW3S11 (1:10000) 18.63	11 5.26	7/21/2008 Wipp-mmmgo-11, p25
12	GW3S12 (1.10000) 18.25	27 5.15	7/21/2008 Wipp-mmmgo-11, p25
13	GW3S13 (1:10000) 17.20	46 4.85	7/23/2008 Wipp-mmmgo-11, p27
14	GW3S14 (1:10000) 18.02	08 5.08	7/23/2008 Wipp-mmmgo-11, p27
15	GW3S15 (1:10000) 19.34	54 5.46	
16	GW3S16 (1:10000) 18.59	45 5.24	
17	GW3S17 (1:10000) 21.71	99 6.13	6/23/2008 Wipp-mmmgo-11, p15
18	GW3S18 (1:10000) 17.82	28 5.03	6/23/2008 Wipp-mmmgo-11, p15

GW3S3 (1:10000)		0.59	7/9/2008 Wipp-mmmgo-11, p21
GW3S15 (1:10000)	20.2005	5.70	7/7/2008 Wipp-mmmgo-11, p20
GW3S15 (1:10000)	18.4903	5.22	7/31/2008 Wipp-mmmgo-11, p30
GW3S16 (1:10000)	17.9515	5.06	7/7/2008 Wipp-mmmgo-11, p20
GW3S16 (1:10000)	19.2376	5.43	7/31/2008 Wipp-mmmgo-11, p30

1					
2					1
3					- 1
4					ŀ
5		2072.0			
6		57.7E. A			- 1
7	MgCl2 20L7 (1:10000)	19.3883	5.47	7/17/2008 Wipp-mmmgo-11, p24	- 1
8	MgCl2 20L8 (1:10000)	18.4062	5.19	7/17/2008 Wipp-mmmgo-11, p24	- 1
9	mgonz zozo (m. rocc)			ge, F=.	ı
10					- 1
11	MgCl2 20L11 (1:10000)	19.9269	5.62	7/21/2008 Wipp-mmmgo-11, p25	ı
12	MgCl2 20L12 (1:10000)	18.7017	5.28	7/22/2008 Wipp-mmmgo-11, p26	
13	MgCl2 20L13 (1:10000)	21.0637	5.94	7/3/2008 Wipp-mmmgo-11, p19	- 1
14	MgCl2 20L14 (1:10000)	21.0706	5.94	7/3/2008 Wipp-mmmgo-11, p19	•
15	MgCl2 20L14 (1:10000)	18.6738	5,27	7/22/2008 Wipp-mmmgo-11, p26	- 1
16	MgCl2 20L16 (1:10000)	18.8254	5.31	7/22/2008 Wipp-mmmgo-11, p26	
		19.7805	5.58	7/22/2008 Wipp-miningo-11, p26	ı
17	MgCl2 20L17 (1:10000)		5.65		
18	MgCl2 20L18 (1:10000)	20.0294	5,35	9/4/2009 Minn 44 -24	
19	MgCl2 20L19 (1:10000)	18.9710	00000000000000000000000000000000000000	8/4/2008 Wipp-mmmgo-11, p31	- 1
20	MgCl2 20L20 (1:10000)	19,5338	5.51	8/4/2008 Wipp-mmmgo-11, p31	
	MgCl2 20L17 (1:10000) MgCl2 20L17 (1:10000) MgCl2 20L18 (1:10000) MgCl2 20L18 (1:10000)	20.7288 18.8322 20.7462 19.3127	5.85 5.31 5.85 5.45	7/7/2008 Wipp-mmmgo-11, p20 7/31/2008 Wipp-mmmgo-11, p30 7/7/2008 Wipp-mmmgo-11, p20 7/31/2008 Wipp-mmmgo-11, p30	
i					
1 2 3 4					
2 3 4					-
2 3 4 5					
2 3 4 5	MaC(2.20M7/41-10000)	10.6543	5.54	7/1/2008 Wish mmmgo 11, p15	
2 3 4 5 6	MgCl2 20M7 (1:10000)	19.6543	5.54 6.07	7/1/2008 Wipp-mmmgo-11, p15	
2 3 4 5 6 7 8	MgCl2 20M7 (1:10000) MgCl2 20M8 (1:10000)	19.6543 21.5216	5.54 6.07	7/1/2008 Wipp-mmmgo-11, p15 7/17/2008 Wipp-mmmgo-11, p24	
2 3 4 5 6 7 8		900,000,000,000	1-7-2-2-2-4-2-2-4-HHHHHHHHH		
2 3 4 5 6 7 8 9	MgCl2 20M8 (1:10000)	21.5216	6.07	7/17/2008 Wipp-mmmgo-11, p24	
2 3 4 5 6 7 8 9 10	MgCl2 20M8 (1:10000) MgCl2 20M11 (1:10000)	21.5216	6.07 5.39	7/17/2008 Wipp-mmmgo-11, p24 7/21/2008 Wipp-mmmgo-11, p25	
2 3 4 5 6 7 8 9 10 11 12	MgCl2 20M8 (1:10000) MgCl2 20M11 (1:10000) MgCl2 20M12 (1:10000)	21.5216 19.1033 19.6649	6.07 5.39 5.55	7/17/2008 Wipp-mmmgo-11, p24 7/21/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p25	
2 3 4 5 6 7 8 9 10 11 12 13	MgCl2 20M8 (1:10000) MgCl2 20M11 (1:10000) MgCl2 20M12 (1:10000) MgCl2 20M13 (1:10000)	21.5216 19.1033 19.6649 21.2213	5.39 5.55 5.99	7/17/2008 Wipp-mmmgo-11, p24 7/21/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p25 7/3/2008 Wipp-mmmgo-11, p19	
2 3 4 5 6 7 8 9 10 11 12 13	MgCl2 20M8 (1:10000) MgCl2 20M11 (1:10000) MgCl2 20M12 (1:10000) MgCl2 20M13 (1:10000) MgCl2 20M14 (1:10000)	21.5216 19.1033 19.6649 21.2213 21.7542	5.39 5.55 5.99 6.14	7/17/2008 Wipp-mmmgo-11, p24 7/21/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p25 7/3/2008 Wipp-mmmgo-11, p19 7/3/2008 Wipp-mmmgo-11, p19	
2 3 4 5 6 7 8 9 10 11 12 13 14 15	MgCl2 20M8 (1:10000) MgCl2 20M11 (1:10000) MgCl2 20M12 (1:10000) MgCl2 20M13 (1:10000) MgCl2 20M14 (1:10000) MgCl2 20M15 (1:10000)	21.5216 19.1033 19.6649 21.2213 21.7542 16.2091	5.39 5.55 5.99 6.14 4.57	7/17/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p19 7/3/2008 Wipp-mmmgo-11, p19 7/22/2008 Wipp-mmmgo-11, p26	
2 3 4 5 6 7 8 9 10 11 12 13 14 15	MgCl2 20M8 (1:10000) MgCl2 20M11 (1:10000) MgCl2 20M12 (1:10000) MgCl2 20M13 (1:10000) MgCl2 20M14 (1:10000) MgCl2 20M15 (1:10000) MgCl2 20M16 (1:10000)	21.5216 19.1033 19.6649 21.2213 21.7542 16.2091 17.2212	5.39 5.55 5.99 6.14 4.57 4.86	7/17/2008 Wipp-mmmgo-11, p24 7/21/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p25 7/3/2008 Wipp-mmmgo-11, p19 7/3/2008 Wipp-mmmgo-11, p19	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	MgCl2 20M8 (1:10000) MgCl2 20M11 (1:10000) MgCl2 20M12 (1:10000) MgCl2 20M13 (1:10000) MgCl2 20M14 (1:10000) MgCl2 20M15 (1:10000) MgCl2 20M16 (1:10000) MgCl2 20M17 (1:10000)	21.5216 19.1033 19.6649 21.2213 21.7542 16.2091 17.2212 20.9420	5.39 5.55 5.99 6.14 4.57 4.86 5.91	7/17/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p19 7/3/2008 Wipp-mmmgo-11, p19 7/22/2008 Wipp-mmmgo-11, p26	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	MgCl2 20M8 (1:10000) MgCl2 20M11 (1:10000) MgCl2 20M12 (1:10000) MgCl2 20M13 (1:10000) MgCl2 20M14 (1:10000) MgCl2 20M15 (1:10000) MgCl2 20M16 (1:10000) MgCl2 20M17 (1:10000) MgCl2 20M18 (1:10000)	21.5216 19.1033 19.6649 21.2213 21.7542 16.2091 17.2212 20.9420 20.1984	5.39 5.55 5.99 6.14 4.57 4.86 5.91 5.70	7/17/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p19 7/3/2008 Wipp-mmmgo-11, p19 7/22/2008 Wipp-mmmgo-11, p26 7/22/2008 Wipp-mmmgo-11, p26	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	MgCl2 20M8 (1:10000) MgCl2 20M11 (1:10000) MgCl2 20M12 (1:10000) MgCl2 20M13 (1:10000) MgCl2 20M14 (1:10000) MgCl2 20M15 (1:10000) MgCl2 20M17 (1:10000) MgCl2 20M17 (1:10000) MgCl2 20M18 (1:10000) MgCl2 20M18 (1:10000) MgCl2 20M19 (1:10000)	21.5216 19.1033 19.6649 21.2213 21.7542 16.2091 17.2212 20.9420 20.1984 18.8557	5.39 5.55 5.99 6.14 4.57 4.86 5.91 5.70 5.32	7/17/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p25 7/3/2008 Wipp-mmmgo-11, p19 7/3/2008 Wipp-mmmgo-11, p26 7/22/2008 Wipp-mmmgo-11, p26 8/4/2008 Wipp-mmmgo-11, p26	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	MgCl2 20M8 (1:10000) MgCl2 20M11 (1:10000) MgCl2 20M12 (1:10000) MgCl2 20M13 (1:10000) MgCl2 20M14 (1:10000) MgCl2 20M15 (1:10000) MgCl2 20M16 (1:10000) MgCl2 20M17 (1:10000) MgCl2 20M18 (1:10000)	21.5216 19.1033 19.6649 21.2213 21.7542 16.2091 17.2212 20.9420 20.1984	5.39 5.55 5.99 6.14 4.57 4.86 5.91 5.70	7/17/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p19 7/3/2008 Wipp-mmmgo-11, p19 7/22/2008 Wipp-mmmgo-11, p26 7/22/2008 Wipp-mmmgo-11, p26	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	MgCl2 20M8 (1:10000) MgCl2 20M11 (1:10000) MgCl2 20M12 (1:10000) MgCl2 20M13 (1:10000) MgCl2 20M14 (1:10000) MgCl2 20M15 (1:10000) MgCl2 20M16 (1:10000) MgCl2 20M18 (1:10000) MgCl2 20M19 (1:10000) MgCl2 20M20 (1:10000) MgCl2 20M18 (1:10000)	21.5216 19.1033 19.6649 21.2213 21.7542 16.2091 17.2212 20.9420 20.1984 18.8557 18.4407	5.39 5.55 5.99 6.14 4.57 4.86 5.91 5.70 5.32 5.20	7/17/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p25 7/3/2008 Wipp-mmmgo-11, p19 7/3/2008 Wipp-mmmgo-11, p26 7/22/2008 Wipp-mmmgo-11, p26 7/22/2008 Wipp-mmmgo-11, p26 8/4/2008 Wipp-mmmgo-11, p31 8/4/2008 Wipp-mmmgo-11, p31 7/7/2008 Wipp-mmmgo-11, p31	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	MgCl2 20M8 (1:10000) MgCl2 20M11 (1:10000) MgCl2 20M12 (1:10000) MgCl2 20M13 (1:10000) MgCl2 20M14 (1:10000) MgCl2 20M15 (1:10000) MgCl2 20M17 (1:10000) MgCl2 20M17 (1:10000) MgCl2 20M18 (1:10000) MgCl2 20M19 (1:10000) MgCl2 20M20 (1:10000)	21.5216 19.1033 19.6649 21.2213 21.7542 16.2091 17.2212 20.9420 20.1984 18.8557 18.4407	5.39 5.55 5.99 6.14 4.57 4.86 5.91 5.70 5.32 5.20	7/17/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p25 7/3/2008 Wipp-mmmgo-11, p19 7/3/2008 Wipp-mmmgo-11, p26 7/22/2008 Wipp-mmmgo-11, p26 8/4/2008 Wipp-mmmgo-11, p31 8/4/2008 Wipp-mmmgo-11, p31 8/4/2008 Wipp-mmmgo-11, p31	

1 2				
3	MgCl23M3 (1:10000)	19.7374	5.57	7/1/2008 Wipp-mmmgo-11, p15
4	NIGCI25INI5 (1.10000)	19.7074		77 172000 VVIPP-IIIIIIIIg0-11, p13
5				
6				
7	MgCl2 3M7 (1:10000)	18.4638	5.21	7/17/2008 Wipp-mmmgo-11, p24
8	MgCl2 3M8 (1:10000)	18.2779	5.16	7/17/2008 Wipp-mmmgo-11, p24
9	, ,			
10				
11	MgCl2 3M11 (1:10000)	18.6266	5.25	7/17/2008 Wipp-mmmgo-11, p24
12	MgCl2 3M12 (1:10000)	19.3200	5.45	7/17/2008 Wipp-mmmgo-11, p24
13	MgCl2 3M13 (1:10000)	34.6706	9.78	7/3/2008 Wipp-mmmgo-11, p19
14	MgCl2 3M14 (1:10000)	20.8014	5,87	7/3/2008 Wipp-mmmgo-11, p19
15	MgCl2 3M15 (1:10000)	19.3756	5.47	7/23/2008 Wipp-mmmgo-11, p27
16	MgCl2 3M16 (1:10000)	18.9197	5.34	7/23/2008 Wipp-mmmgo-11, p27
17	MgCl2 3M17 (1:10000)	19.4004	5.47	
18	MgCl2 3M18 (1:10000)	19.2366	5.43	0/4/2000 14/5 14 -24
19	MgCl2 3M19 (1:10000)	19.1148	5.39	8/4/2008 Wipp-mmmgo-11, p31
20	MgCl2 3M20 (1:10000)	19,1565	5.40 6.63	8/4/2008 Wipp-mmmgo-11, p31
21	MgCl23M21 (1:10000)	19.5893 19.7995	5.53 5.58	6/23/2008 Wipp-mmmgo-11, p15 6/23/2008 Wipp-mmmgo-11, p15
22	MgCl23M22 (1:10000)	19.7993 22.22	0.00	0/20/2000 VVIpp-Hillings-11, p10
	MgCl2 3M4 (1:10000)	20.6373	5.82	7/9/2008 Wipp-mmmgo-11, p21
	MgCl2 3M17 (1:10000)	20.8314	5.88	7/7/2008 Wipp-mmmgo-11, p20
	, ,	17.9694	5.07	7/31/2008 Wipp-mmmgo-11, p30
	MQC(2.3M17 (1:10000)			
	MgCl2 3M17 (1:10000) MgCl2 3M18 (1:10000)	20.2656	5.72	
1	MgCl2 3M18 (1:10000) MgCl2 3M18 (1:10000) MgCl2 3M18 (1:10000)			7/7/2008 Wipp-mmmgo-11, p20 7/31/2008 Wipp-mmmgo-11, p30
general control of the control of th	MgCl2 3M18 (1:10000)	20.2656	5.72	7/7/2008 Wipp-mmmgo-11, p20
	MgCl2 3M18 (1:10000)	20.2656	5.72	7/7/2008 Wipp-mmmgo-11, p20
1 2 :	MgCl2 3M18 (1:10000)	20.2656	5.72	7/7/2008 Wipp-mmmgo-11, p20
2 3	MgCl2 3M18 (1:10000)	20.2656	5.72	7/7/2008 Wipp-mmmgo-11, p20
2 : 3 · 4 ;	MgCl2 3M18 (1:10000) MgCl2 3M18 (1:10000) MgCl2 3S3 (1:10000)	20.2656 18.2075	5.72 5.14	7/7/2008 Wipp-mmmgo-11, p20 7/31/2008 Wipp-mmmgo-11, p30 7/9/2008 Wipp-mmmgo-11, p21
2 : 3 : 4 : 5	MgCl2 3M18 (1:10000) MgCl2 3M18 (1:10000)	20.2656 18.2075	5.72 5.14	7/7/2008 Wipp-mmmgo-11, p20 7/31/2008 Wipp-mmmgo-11, p30
2 3 4 5 6	MgCl2 3M18 (1:10000) MgCl2 3M18 (1:10000) MgCl2 3S3 (1:10000) MgCl2 3S5 (1:10000)	20.2656 18.2075 20.0480 20.3565	5.72 5.14 5.65 5.74	7/7/2008 Wipp-mmmgo-11, p20 7/31/2008 Wipp-mmmgo-11, p30 7/9/2008 Wipp-mmmgo-11, p21 7/9/2008 Wipp-mmmgo-11, p21
2 3 4 5 6 7	MgCl2 3M18 (1:10000) MgCl2 3M18 (1:10000) MgCl2 3S3 (1:10000) MgCl2 3S5 (1:10000) MgCl2 3S7 (1:10000)	20.2656 18.2075 20.0480 20.3565 18.8742	5.72 5.14 5.65 5.74 5.32	7/7/2008 Wipp-mmmgo-11, p20 7/31/2008 Wipp-mmmgo-11, p30 7/9/2008 Wipp-mmmgo-11, p21 7/9/2008 Wipp-mmmgo-11, p21 7/17/2008 Wipp-mmmgo-11, p24
2 3 4 5 6 7 8	MgCl2 3M18 (1:10000) MgCl2 3M18 (1:10000) MgCl2 3S3 (1:10000) MgCl2 3S5 (1:10000)	20.2656 18.2075 20.0480 20.3565	5.72 5.14 5.65 5.74	7/7/2008 Wipp-mmmgo-11, p20 7/31/2008 Wipp-mmmgo-11, p30 7/9/2008 Wipp-mmmgo-11, p21 7/9/2008 Wipp-mmmgo-11, p21
2 3 4 5 6 7 8 9	MgCl2 3M18 (1:10000) MgCl2 3M18 (1:10000) MgCl2 3S3 (1:10000) MgCl2 3S5 (1:10000) MgCl2 3S7 (1:10000)	20.2656 18.2075 20.0480 20.3565 18.8742	5.72 5.14 5.65 5.74 5.32	7/7/2008 Wipp-mmmgo-11, p20 7/31/2008 Wipp-mmmgo-11, p30 7/9/2008 Wipp-mmmgo-11, p21 7/9/2008 Wipp-mmmgo-11, p21 7/17/2008 Wipp-mmmgo-11, p24
2 3 4 5 6 7 8 9	MgCl2 3M18 (1:10000) MgCl2 3M18 (1:10000) MgCl2 3S3 (1:10000) MgCl2 3S5 (1:10000) MgCl2 3S7 (1:10000) MgCl2 3S8 (1:10000)	20.2656 18.2075 20.0480 20.3565 18.8742 18.3363	5.72 5.14 5.65 5.74 5.32 5.17	7/7/2008 Wipp-mmmgo-11, p20 7/31/2008 Wipp-mmmgo-11, p30 7/9/2008 Wipp-mmmgo-11, p21 7/9/2008 Wipp-mmmgo-11, p21 7/17/2008 Wipp-mmmgo-11, p24 7/17/2008 Wipp-mmmgo-11, p24
2 3 4 5 6 7 8 9 10	MgCl2 3M18 (1:10000) MgCl2 3M18 (1:10000) MgCl2 3S3 (1:10000) MgCl2 3S5 (1:10000) MgCl2 3S7 (1:10000) MgCl2 3S8 (1:10000)	20.2656 18.2075 20.0480 20.3565 18.8742	5.72 5.14 5.65 5.74 5.32 5.17	7/7/2008 Wipp-mmmgo-11, p20 7/31/2008 Wipp-mmmgo-11, p30 7/9/2008 Wipp-mmmgo-11, p21 7/9/2008 Wipp-mmmgo-11, p21 7/17/2008 Wipp-mmmgo-11, p24
2 3 4 5 6 7 8 9	MgCl2 3M18 (1:10000) MgCl2 3M18 (1:10000) MgCl2 3S3 (1:10000) MgCl2 3S5 (1:10000) MgCl2 3S7 (1:10000) MgCl2 3S8 (1:10000) MgCl2 3S11 (1:10000) MgCl2 3S12 (1:10000)	20.2656 18.2075 20.0480 20.3565 18.8742 18.3363	5.72 5.14 5.65 5.74 5.32 5.17	7/7/2008 Wipp-mmmgo-11, p20 7/31/2008 Wipp-mmmgo-11, p30 7/9/2008 Wipp-mmmgo-11, p21 7/9/2008 Wipp-mmmgo-11, p21 7/17/2008 Wipp-mmmgo-11, p24 7/17/2008 Wipp-mmmgo-11, p24
2 3 4 5 6 7 8 9 10 11 12	MgCl2 3M18 (1:10000) MgCl2 3M18 (1:10000) MgCl2 3S3 (1:10000) MgCl2 3S5 (1:10000) MgCl2 3S7 (1:10000) MgCl2 3S8 (1:10000)	20.2656 18.2075 20.0480 20.3565 18.8742 18.3363	5.72 5.14 5.65 5.74 5.32 5.17	7/7/2008 Wipp-mmmgo-11, p20 7/31/2008 Wipp-mmmgo-11, p30 7/9/2008 Wipp-mmmgo-11, p21 7/9/2008 Wipp-mmmgo-11, p21 7/17/2008 Wipp-mmmgo-11, p24 7/17/2008 Wipp-mmmgo-11, p24 7/21/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p25
2 3 4 5 6 7 8 9 10 11 12 13	MgCl2 3M18 (1:10000) MgCl2 3M18 (1:10000) MgCl2 3S3 (1:10000) MgCl2 3S5 (1:10000) MgCl2 3S7 (1:10000) MgCl2 3S11 (1:10000) MgCl2 3S12 (1:10000) MgCl2 3S13 (1:10000) MgCl2 3S14 (1:10000) MgCl2 3S15 (1:10000)	20.2656 18.2075 20.0480 20.3565 18.8742 18.3363 18.4526 18.3819 20.0402	5.72 5.14 5.65 5.74 5.32 5.17 5.20 5.18 5.65 5.81 5.51	7/7/2008 Wipp-mmmgo-11, p20 7/31/2008 Wipp-mmmgo-11, p30 7/9/2008 Wipp-mmmgo-11, p21 7/9/2008 Wipp-mmmgo-11, p24 7/17/2008 Wipp-mmmgo-11, p24 7/21/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p25 7/3/2008 Wipp-mmmgo-11, p19 7/3/2008 Wipp-mmmgo-11, p19 7/3/2008 Wipp-mmmgo-11, p19
2 3 4 5 6 7 8 9 10 11 12 13 14	MgCl2 3M18 (1:10000) MgCl2 3M18 (1:10000) MgCl2 3S3 (1:10000) MgCl2 3S5 (1:10000) MgCl2 3S7 (1:10000) MgCl2 3S8 (1:10000) MgCl2 3S11 (1:10000) MgCl2 3S12 (1:10000) MgCl2 3S12 (1:10000) MgCl2 3S13 (1:10000) MgCl2 3S14 (1:10000)	20.2656 18.2075 20.0480 20.3565 18.8742 18.3363 18.4526 18.3819 20.0402 20.6127	5.72 5.14 5.65 5.74 5.32 5.17 5.20 5.18 5.65 5.81	7/7/2008 Wipp-mmmgo-11, p20 7/31/2008 Wipp-mmmgo-11, p30 7/9/2008 Wipp-mmmgo-11, p21 7/9/2008 Wipp-mmmgo-11, p21 7/17/2008 Wipp-mmmgo-11, p24 7/17/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p25 7/3/2008 Wipp-mmmgo-11, p19 7/3/2008 Wipp-mmmgo-11, p19 7/3/2008 Wipp-mmmgo-11, p19
2 3 4 5 6 7 8 9 10 11 12 13 14 15	MgCl2 3M18 (1:10000) MgCl2 3M18 (1:10000) MgCl2 3S3 (1:10000) MgCl2 3S5 (1:10000) MgCl2 3S7 (1:10000) MgCl2 3S1 (1:10000) MgCl2 3S12 (1:10000) MgCl2 3S12 (1:10000) MgCl2 3S14 (1:10000) MgCl2 3S15 (1:10000) MgCl2 3S15 (1:10000) MgCl2 3S15 (1:10000) MgCl2 3S15 (1:10000) MgCl2 3S16 (1:10000) MgCl2 3S16 (1:10000)	20.2656 18.2075 20.0480 20.3565 18.8742 18.3363 18.4526 18.3819 20.0402 20.6127 19.5346 18.5184 19.6269	5.72 5.14 5.65 5.74 5.32 5.17 5.20 6.18 5.65 5.81 5.51 5.22 5.54	7/7/2008 Wipp-mmmgo-11, p20 7/31/2008 Wipp-mmmgo-11, p30 7/9/2008 Wipp-mmmgo-11, p21 7/9/2008 Wipp-mmmgo-11, p21 7/17/2008 Wipp-mmmgo-11, p24 7/17/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p25 7/3/2008 Wipp-mmmgo-11, p19 7/3/2008 Wipp-mmmgo-11, p19
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	MgCl2 3M18 (1:10000) MgCl2 3M18 (1:10000) MgCl2 3S3 (1:10000) MgCl2 3S5 (1:10000) MgCl2 3S7 (1:10000) MgCl2 3S11 (1:10000) MgCl2 3S12 (1:10000) MgCl2 3S13 (1:10000) MgCl2 3S14 (1:10000) MgCl2 3S15 (1:10000) MgCl2 3S15 (1:10000)	20.2656 18.2075 20.0480 20.3565 18.8742 18.3363 18.4526 18.3819 20.0402 20.6127 19.5346 18.5184	5.72 5.14 5.65 5.74 5.32 5.17 5.20 5.18 5.65 5.81 5.51 5.51	7/7/2008 Wipp-mmmgo-11, p20 7/31/2008 Wipp-mmmgo-11, p30 7/9/2008 Wipp-mmmgo-11, p21 7/9/2008 Wipp-mmmgo-11, p24 7/17/2008 Wipp-mmmgo-11, p24 7/21/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p25 7/3/2008 Wipp-mmmgo-11, p19 7/3/2008 Wipp-mmmgo-11, p19 7/3/2008 Wipp-mmmgo-11, p19
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	MgCl2 3M18 (1:10000) MgCl2 3M18 (1:10000) MgCl2 3S3 (1:10000) MgCl2 3S5 (1:10000) MgCl2 3S7 (1:10000) MgCl2 3S8 (1:10000) MgCl2 3S11 (1:10000) MgCl2 3S12 (1:10000) MgCl2 3S14 (1:10000) MgCl2 3S15 (1:10000) MgCl2 3S16 (1:10000) MgCl2 3S16 (1:10000) MgCl2 3S17 (1:10000) MgCl2 3S18 (1:10000) MgCl2 3S18 (1:10000) MgCl2 3S18 (1:10000)	20.2656 18.2075 20.0480 20.3565 18.8742 18.3363 18.4526 18.3819 20.0402 20.6127 19.5346 18.5184 19.6269 19.9958 18.9998	5.72 5.14 5.65 5.74 5.32 5.17 5.20 5.18 5.65 5.81 5.51 5.52 5.54 5.64 5.36	7/7/2008 Wipp-mmmgo-11, p20 7/31/2008 Wipp-mmmgo-11, p21 7/9/2008 Wipp-mmmgo-11, p21 7/9/2008 Wipp-mmmgo-11, p21 7/17/2008 Wipp-mmmgo-11, p24 7/17/2008 Wipp-mmmgo-11, p24 7/21/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p25 7/3/2008 Wipp-mmmgo-11, p19 7/3/2008 Wipp-mmmgo-11, p27 7/23/2008 Wipp-mmmgo-11, p27 7/23/2008 Wipp-mmmgo-11, p27
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	MgCl2 3M18 (1:10000) MgCl2 3M18 (1:10000) MgCl2 3S3 (1:10000) MgCl2 3S5 (1:10000) MgCl2 3S7 (1:10000) MgCl2 3S11 (1:10000) MgCl2 3S12 (1:10000) MgCl2 3S13 (1:10000) MgCl2 3S14 (1:10000) MgCl2 3S15 (1:10000) MgCl2 3S15 (1:10000) MgCl2 3S17 (1:10000) MgCl2 3S17 (1:10000) MgCl2 3S18 (1:10000) MgCl2 3S19 (1:10000) MgCl2 3S19 (1:10000)	20.2656 18.2075 20.0480 20.3565 18.8742 18.3363 18.4526 18.3819 20.0402 20.6127 19.5346 18.5184 19.6269 19.9958	5.72 5.14 5.65 5.74 5.32 5.17 5.20 5.18 5.65 5.81 5.51 5.22 5.54 5.84 5.36 5.40	7/7/2008 Wipp-mmmgo-11, p20 7/31/2008 Wipp-mmmgo-11, p21 7/9/2008 Wipp-mmmgo-11, p21 7/9/2008 Wipp-mmmgo-11, p24 7/17/2008 Wipp-mmmgo-11, p24 7/17/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p19 7/3/2008 Wipp-mmmgo-11, p19 7/3/2008 Wipp-mmmgo-11, p27 7/23/2008 Wipp-mmmgo-11, p27 8/4/2008 Wipp-mmmgo-11, p27
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	MgCl2 3M18 (1:10000) MgCl2 3M18 (1:10000) MgCl2 3S3 (1:10000) MgCl2 3S5 (1:10000) MgCl2 3S7 (1:10000) MgCl2 3S11 (1:10000) MgCl2 3S12 (1:10000) MgCl2 3S13 (1:10000) MgCl2 3S15 (1:10000) MgCl2 3S15 (1:10000) MgCl2 3S15 (1:10000) MgCl2 3S16 (1:10000) MgCl2 3S17 (1:10000) MgCl2 3S18 (1:10000) MgCl2 3S19 (1:10000) MgCl2 3S19 (1:10000) MgCl2 3S20 (1:10000) MgCl2 3S20 (1:10000)	20.2656 18.2075 20.0480 20.3565 18.8742 18.3363 18.4526 18.3819 20.0402 20.6127 19.5346 18.5184 19.6269 19.9958 18.9998 19.1313 19.4314	5.72 5.14 5.65 5.74 5.32 5.17 5.20 5.18 5.65 5.81 5.51 5.22 5.54 5.64 5.36 5.40 5.48	7/7/2008 Wipp-mmmgo-11, p20 7/31/2008 Wipp-mmmgo-11, p30 7/9/2008 Wipp-mmmgo-11, p21 7/9/2008 Wipp-mmmgo-11, p24 7/17/2008 Wipp-mmmgo-11, p24 7/17/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p25 7/3/2008 Wipp-mmmgo-11, p27 7/23/2008 Wipp-mmmgo-11, p27 8/4/2008 Wipp-mmmgo-11, p27 8/4/2008 Wipp-mmmgo-11, p31 8/4/2008 Wipp-mmmgo-11, p31 8/4/2008 Wipp-mmmgo-11, p31 8/4/2008 Wipp-mmmgo-11, p31
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	MgCl2 3M18 (1:10000) MgCl2 3M18 (1:10000) MgCl2 3S3 (1:10000) MgCl2 3S5 (1:10000) MgCl2 3S7 (1:10000) MgCl2 3S11 (1:10000) MgCl2 3S12 (1:10000) MgCl2 3S13 (1:10000) MgCl2 3S14 (1:10000) MgCl2 3S15 (1:10000) MgCl2 3S15 (1:10000) MgCl2 3S17 (1:10000) MgCl2 3S17 (1:10000) MgCl2 3S18 (1:10000) MgCl2 3S19 (1:10000) MgCl2 3S19 (1:10000)	20.2656 18.2075 20.0480 20.3565 18.8742 18.3363 18.4526 18.3819 20.0402 20.6127 19.5346 18.5184 19.6269 19.9958 18.9998 19.1313	5.72 5.14 5.65 5.74 5.32 5.17 5.20 5.18 5.65 5.81 5.51 5.22 5.54 5.84 5.36 5.40	7/7/2008 Wipp-mmmgo-11, p20 7/31/2008 Wipp-mmmgo-11, p21 7/9/2008 Wipp-mmmgo-11, p21 7/9/2008 Wipp-mmmgo-11, p24 7/17/2008 Wipp-mmmgo-11, p24 7/17/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p19 7/3/2008 Wipp-mmmgo-11, p19 7/3/2008 Wipp-mmmgo-11, p27 7/23/2008 Wipp-mmmgo-11, p27 8/4/2008 Wipp-mmmgo-11, p27
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	MgCl2 3M18 (1:10000) MgCl2 3M18 (1:10000) MgCl2 3S3 (1:10000) MgCl2 3S5 (1:10000) MgCl2 3S7 (1:10000) MgCl2 3S11 (1:10000) MgCl2 3S12 (1:10000) MgCl2 3S15 (1:10000) MgCl2 3S15 (1:10000) MgCl2 3S15 (1:10000) MgCl2 3S15 (1:10000) MgCl2 3S16 (1:10000) MgCl2 3S17 (1:10000) MgCl2 3S19 (1:10000) MgCl2 3S20 (1:10000) MgCl2 3S22 (1:10000) MgCl23S22 (1:10000) MgCl23S22 (1:10000)	20.2656 18.2075 20.0480 20.3565 18.8742 18.3363 18.4526 18.3819 20.0402 20.6127 19.5346 18.5184 19.6269 19.9958 18.9998 19.1313 19.4314 18.4048	5.72 5.14 5.65 5.74 5.32 5.17 5.20 5.18 5.65 5.81 5.51 5.22 5.54 5.64 5.36 5.40 5.48 5.19	7/7/2008 Wipp-mmmgo-11, p20 7/31/2008 Wipp-mmmgo-11, p21 7/9/2008 Wipp-mmmgo-11, p21 7/9/2008 Wipp-mmmgo-11, p21 7/17/2008 Wipp-mmmgo-11, p24 7/17/2008 Wipp-mmmgo-11, p24 7/17/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p25 7/3/2008 Wipp-mmmgo-11, p19 7/33/2008 Wipp-mmmgo-11, p27 7/23/2008 Wipp-mmmgo-11, p27 8/4/2008 Wipp-mmmgo-11, p31 8/4/2008 Wipp-mmmgo-11, p31 6/23/2008 Wipp-mmmgo-11, p15 6/23/2008 Wipp-mmmgo-11, p15
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	MgCl2 3M18 (1:10000) MgCl2 3M18 (1:10000) MgCl2 3S3 (1:10000) MgCl2 3S5 (1:10000) MgCl2 3S7 (1:10000) MgCl2 3S8 (1:10000) MgCl2 3S11 (1:10000) MgCl2 3S12 (1:10000) MgCl2 3S14 (1:10000) MgCl2 3S15 (1:10000) MgCl2 3S16 (1:10000) MgCl2 3S16 (1:10000) MgCl2 3S16 (1:10000) MgCl2 3S18 (1:10000) MgCl2 3S19 (1:10000) MgCl2 3S20 (1:10000) MgCl2 3S21 (1:10000) MgCl2 3S21 (1:10000) MgCl2 3S21 (1:10000) MgCl2 3S21 (1:10000) MgCl2 3S21 (1:10000) MgCl2 3S27 (1:10000)	20.2656 18.2075 20.0480 20.3565 18.8742 18.3363 18.4526 18.3819 20.0402 20.6127 19.5346 18.5184 19.6269 19.9958 18.9998 19.1313 19.4314 18.4048 20.4628 18.7911	5.72 5.14 5.65 5.74 5.32 5.17 5.20 5.18 5.65 5.81 5.51 5.22 5.54 5.64 5.36 5.40 5.48 5.19	7/7/2008 Wipp-mmmgo-11, p20 7/31/2008 Wipp-mmmgo-11, p21 7/9/2008 Wipp-mmmgo-11, p21 7/9/2008 Wipp-mmmgo-11, p21 7/17/2008 Wipp-mmmgo-11, p24 7/17/2008 Wipp-mmmgo-11, p24 7/21/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p25 7/3/2008 Wipp-mmmgo-11, p19 7/3/2008 Wipp-mmmgo-11, p19 7/23/2008 Wipp-mmmgo-11, p27 7/23/2008 Wipp-mmmgo-11, p31 8/4/2008 Wipp-mmmgo-11, p31 8/4/2008 Wipp-mmmgo-11, p31 6/23/2008 Wipp-mmmgo-11, p15 6/23/2008 Wipp-mmmgo-11, p15
2 3 4 5 6 7 8 9 10 111 12 13 14 15 16 17 18 19 20 21	MgCl2 3M18 (1:10000) MgCl2 3M18 (1:10000) MgCl2 3S3 (1:10000) MgCl2 3S5 (1:10000) MgCl2 3S7 (1:10000) MgCl2 3S11 (1:10000) MgCl2 3S12 (1:10000) MgCl2 3S15 (1:10000) MgCl2 3S15 (1:10000) MgCl2 3S15 (1:10000) MgCl2 3S15 (1:10000) MgCl2 3S16 (1:10000) MgCl2 3S17 (1:10000) MgCl2 3S19 (1:10000) MgCl2 3S20 (1:10000) MgCl2 3S22 (1:10000) MgCl23S22 (1:10000) MgCl23S22 (1:10000)	20.2656 18.2075 20.0480 20.3565 18.8742 18.3363 18.4526 18.3819 20.0402 20.6127 19.5346 18.5184 19.6269 19.9958 18.9998 19.1313 19.4314 18.4048	5.72 5.14 5.65 5.74 5.32 5.17 5.20 5.18 5.65 5.81 5.51 5.22 5.54 5.64 5.36 5.40 5.48 5.19	7/7/2008 Wipp-mmmgo-11, p20 7/31/2008 Wipp-mmmgo-11, p21 7/9/2008 Wipp-mmmgo-11, p21 7/9/2008 Wipp-mmmgo-11, p21 7/17/2008 Wipp-mmmgo-11, p24 7/17/2008 Wipp-mmmgo-11, p24 7/17/2008 Wipp-mmmgo-11, p25 7/21/2008 Wipp-mmmgo-11, p25 7/3/2008 Wipp-mmmgo-11, p19 7/33/2008 Wipp-mmmgo-11, p27 7/23/2008 Wipp-mmmgo-11, p27 8/4/2008 Wipp-mmmgo-11, p31 8/4/2008 Wipp-mmmgo-11, p31 6/23/2008 Wipp-mmmgo-11, p15 6/23/2008 Wipp-mmmgo-11, p15

Raw Data:

The scientific notebook and page number reference for the sample dilutions are given in column F

The measured CI- concentrations in ppm, from ion-chromatography, are recorded in supplemental binder "MMMgO-CI electrode-1". The raw CI- data can be found in the supplemental binder under the tab corresponding to the date of analysis listed in column E

Calculations: In column D, the CI- concentration in mol/l is calculated by =

CI concentration in column C / 10³ (conversion from ppm to g/L) / 35.4527 (molecular weight of CI) x10000 (dilution factor)

Note: when the CI- concentration in column C has been analyzed more than once, the average value is used.

For example, the result for sample MgCl2 3S17 (1:100000), given in cell C294, is the average of cells C312 and C313

Final result:

The CI- concentrations from column D are input into the Excel file "plots(review)", on the worksheet "raw data", on columns H, R, AD, AP, BB, BQ

				10	CP-AES INFORMA	TION			-230								
		ICP-AES Date	ICP-AES Raw	ICP-AES Raw		Procedure	Procedure	Dilution Inform	mation			Termination					
ample ID		TO THE	Conc. Mg (mg/l)	Conc. Ca (mg/l)	Dilution Factor	Mg Molarity (mol/l)	Ca Molarity (mol/l)	Notebook	Page	Notebook	Page	Nolebook	Page				
MgCl2)20L	1	4/22/2008		2.704	66.67	0.0000	0.0045	10	46			5	75				
MgCl2)20L	2	4/22/2008		3.952	66.67	0.0000	0.0066	10	46			5	75				
MgCl2)20L	3	7/15/2008		56.2	3.33	0.0000	0.0047					5	79				
MgCl2)20L	3	7/16/2008	31.8		666.00	0.8714	0.0000					5	79				
MgCl2)20L	4	7/15/2008		53.7	3.33	0.0000	0.0045	5 75	100			5	79				
MgCl2)20L	4	7/16/2008	31.9	12 3 3 3 3 3	666.00	0.8741	0.0000		20			5	79				
MgCl2)20L	5	4/13/2007		54.7	3.33	0.0000	0.0045	6	77	5	84	6	11				
MgCl2)20L	5	6/28/2007	28,0		666.67	0.7680	0.0000	6	77	5	84	6	5 11				
MgCl2)20L	6	4/13/2007	1 1	55.2	3.33	0.0000	0.0046	6	77	5	84	6	11				
MgCl2]20L	6	6/28/2007	24.7		666.67	0.6775	0.0000	6	77	5	84	6	11				
MgCl2)20L	7	4/22/2008		3.309	66.67	0.0000	0.0055	10	46	1057	1963	6	28				
MgCl2J20L	8	4/22/2008		2.984	66.67	0.0000	0.0050	10	46	1	()	6	28				
VgCl2]20L	9	4/22/2008		1.034	200.00	0.0000	0.0052	10	46			6	29				
MgCl2j20L	10	4/22/2008		1.053	200.00	0.0000	0.0053	10	46			6	29				
VgCl2)20L	11	4/22/2008	1 = 100	1.079	200.00	0.0000	0.0054	10	46			6	50			1	
MgCl2)20L	12	4/22/2008		1.062	200.00	0.0000	0.0053	10	46		N1	6	50				
WgC12)20L	13	1/24/2008	19.7		Procedure	0.9321	0.0000		1			5	98				
MgCl2j20L	13	1/30/2008		5.89	Procedure	0.0000	0.0169					5	98				
MgCl2)20L	14	1/24/2008	18.7		Procedure	0.8848	0.0000	i i				5	98		Ш		
WgCl2)20L	14	1/30/2008	Ti-	5.96	Procedure	0.0000	0.0171					5	98		Ш		
VgCl2)20L	15	9/5/2007	26.2		Procedure	1.2397	0.0000					6	84				
MgCl2j20L	15	9/5/2007		2.08	Procedure	0.0000	0.0060			0.1		6	84				
MgCl2)20L	16	9/5/2007		2.21	Procedure	0.0000	0.0063		1		15 3	6	84				
MgCl2j20L	16	9/5/2007	24.5		Procedure	1.1592	0.0000		-	13-14		6	84				
MgCl2)20L	17	1/28/2008	23.7		Procedure	1.1214	0.0000	-	5-1			9	28	1			
MgCl2]20L	17	1/31/2008		2.082	Procedure	0,0000	0.0060		7	-90	5-14	9	28		44		
MgCl2]20L	18	1/28/2008	23.7	E-1600	Procedure	1.1214	0.0000			-		9	28	1	44		
MgCl2)20L	18	1/31/2008	200	1.839	Procedure	0.0000	0.0053					9	28				
MgCl2)20L	19	4/21/2008	24.3	100	Procedure	1.1498	0.0000	10	44			10	44				
MgCl2)20L	19	4/22/2008	1000	2.165	Procedure	0.0000	0.0062	10	44		7 60	10	44		41		
MgCl2)20L	20	4/21/2008	24		Procedure	1.1356	0.0000	10	44			10	44				
MgCl2)20L	20	4/22/2008		2.028	Procedure	0.0000	0.0058	10	44	10000	6-18	10	44				

	1	ICP-AES Date	ICP-AES Raw	ICP-AES Raw		Procedure	Procedure	Dilution Inform	nation			Termination	
Sample ID		1	Conc. Mg (mg/l)	Conc. Ca (mg/l)	Dilution Factor	Mg Molarity (mol/l)	Ca Molarity (mol/l)	Notebook	Page	Notebook	Page	Notebook	Page
(MgCl2)20M	1	4/22/2008		2.95		0.0000	0.0049	10	46			5	75
(MgCl2)20M	2	4/22/2008		2.73	66.67	0.0000	0.0045	10	46			5	75
(MgCl2)20M	3	7/15/2008		57:1	3.33	0.0000	0.0047					5	79
MgCl2)20M	3	7/16/2008	30.1		666.00	0.8248	0.0000					5	79
MgCl2j20M	4	7/15/2008		58.2	3.33	0.0000	0,0048	1	1	-		5	79
MgCl2)20M	4	7/16/2008	31.2		666.00	0.8549	0.0000	2				5	79
MgCl2)20M	5	4/13/2007		58.2	3.33	0.0000	0.0048	6	77	- 5	84	6	11
MgCl2)20M	5	6/28/2007	24.2		666.67	0.6638	0.0000	6	77	5	84	6	11
MgCl2)20M	- 6	4/13/2007		58.6	3.33	0.0000	0.0049	6	77	5	84	6	11
MgCl2)20M	6	No Mg Test				#VALUEI	#VALUE!	6	77	5	84	6	n
MgCl2)20M	7	4/22/2008		3.211	66.67	0.0000	0.0053	10	46			6	28
MgCl2)20M	8	4/22/2008		3.342	66.67	0.0000	0.0056	10	46	N S		6	28
MgCl2)20M	9	4/22/2008		1.055	200.00	0.0000	0.0053	10	46		5	6	29
MgCl2)20M	10	4/22/2008		1.178	200.00	0.0000	0.0059	10	46			6	29
MgCl2J20M	11	4/22/2008		1.05	200.00	0.0000	0.0052	10	46	1 - 50		6	50
MgCl2)20M	12	4/22/2008		1.011	200.00	0.0000	0.0050	10	46		-	6	50
MgCl2)20M	13	1/24/2008	19.1		Procedure	0.9037	0.0000				166	5	98
MgCl2j20M	13	1/30/2008	The same	5.81	Procedure	0.0000	0.0167				7.8	5	98
MgCl2)20M	14	1/24/2008	16.4		Procedure	0.7760	0.0000				78.5	5	98
MgCl2)20M	14	1/30/2008	U. S.	5.9	Procedure	0.0000	0.0169					5	98
MgCl2)20M	15	9/5/2007	20.2		Procedure	0.9558	0.0000				TEN!	6	84
MgCl2)20M	15	9/5/2007		1.91	Procedure	0.0000	0.0055		Sept.			6	84
MgCl2)20M	16	9/5/2007	21.8		Procedure	1.0315	0.0000					6	84
MgCl2)20M	16	9/5/2007	110	1.97	Procedure	0.0000	0.0057					6	84
MgCl2)20M	17	1/28/2008	23.3		Procedure	1.1024	0.0000					9	28
MgCi2j20M	17	1/31/2008		2.264	Procedure	0.0000	0.0065					9	28
MgCl2)20M	18	1/28/2008	23		Procedure	1.0883	0.0000			11-		9	28
MgCl2)20M	18			17.56	Procedure	0.0000	0.0504				1 30	9	28
MgCl2)20M	19		23		Procedure	1.0883	0.0000	10	44	No.	- 10	10	44
MgCl2)20M	19	A CONTRACTOR OF THE PARTY OF TH		2.204	Procedure	0.0000	0.0063	- 10	44		1923	10	44
MgCl2J20M	20	4/21/2008	22.8		Procedure	1.0788	0.0000	10	44			10	44
MgCl2)20M	20	4/22/2008	L. C.	2.144	Procedure	0.0000	0.0062	10	44			10	44
	100				Marin H		N SV	E-3-3			1		
	-	1	G-100	The same of	1				GUE.				
	1			100	-	100000	100000	F-33-1	1	1			

- 5	IC	CP-AES Date	ICP-AES Raw	ICP-AES Raw		Procedure	Procedure	Dilution Inform	nation		136	Termination				
ample ID	14		Conc. Mg (mg/l)	Conc. Ca (mg/l)	Dilution Factor	Mg Molarity (mol/l)	Ca Molarity (mol/l)	Notebook	Page	Notebook	Page	Notebook	Page			
(gCl2)3M	1	4/23/2008		19.1	66.67	0.0000	0.0318	10	46		670	5	75			
AgCl2)3M	2	4/23/2008		19.1	66.67	0.0000	0.0318	10	46			5	75			
MgCt2)3M	3	6/27/2007		19.3	66.67	0.0000	0.0321	- 6	77	5	84	5	79			
MgCl2J3M	3	6/28/2007	26.0		666.67	0.7132	0.0000	6	77	5	84	5	79			
vgCt2j3M	4	6/27/2007		19.1	66.67	0.0000	0.0318	6	77	5	84	5	79			
AgCl2 3M	4	6/28/2007	27.1		666.67	0.7433	0.0000	6	77	5	84	5	79			
MgCl2)3M	5	6/27/2007		42.0	33.33	0.0000	0.0349	6	77.	5	84	6	-11			
MgCl2J3M	5	6/28/2007	38.2		333,33	0.5239	0.0000	6	77	5	84	6	11			
AgCl2]3M	6	6/27/2007		40.6	33.33	0.0000	0.0338	- 6	77	5	84	- 6	11			
MgCl2)3M	6	6/28/2007	36.5		333.33	0.5006	0.0000	- 6	77	5	84	6	11			1
AgCl2J3M	7	4/23/2008		24.6	66.67	0.0000	0.0409	10	46			6	28		Ш	
MgCl2)3M	8	4/23/2008		25.3	66.67	0.0000	0.0421	10	46			6	28			1
AgCl2J3M	9	4/23/2008	84.4	9.51	200.00	0.6945	0.0475	10	46			6	29			
AgCl2]3M	10	4/23/2008	77	8.56	200.00	0.6336	0.0427	10	46			6	29			
AgCl2)3M	11	4/23/2008	79.5	9.51	200.00	0.6542	0.0475	-10	46			6	50			
AgCl2)3M	12	4/23/2008	83.5	10.1	200.00	0.6871	0.0504	10	46			6	50			
AgCl2)3M	13	1/24/2008	14.2		Procedure	0.6719	0.0000					5	98			
AgCl2)3M	13	1/30/2008		21	Procedure	0.0000	0.0603					5	98		Ш	1
AgCl2)3M	14	1/24/2008	14		Procedure	0.6624	0.0000					5	98			
AgCl2)3M	14	1/30/2008		22.3	Procedure	0.0000	0.0640					5	98		444	
AgCl2)3M	15	9/5/2007	17.9	2	Procedure	0.8469	0.0000					6	84		441	-
AgCl2)3M	15	9/5/2007		17.5	Procedure	0.0000	0.0502				-11	6	84		444	
AgCl2)3M	16	9/5/2007	18.2		Procedure	0.8611	0.0000				-	6	84	1	444	
MgCl2)3M	16	9/5/2007		18.6	Procedure	0.0000	0.0534		-	135	-	6	84		444	
AgCl2 3M	17	1/28/2008	17.9		Procedure	0.8469	0.0000					9	28		444	
AgCl2)3M	17	1/31/2008		17.16	Procedure	0.0000	0.0492					9	28		444	
MgCl2J3M	18	1/28/2008	17.4	1 2 3	Procedure	0.8233	0.0000					9	28		444	-
MgCl2j3M	18	1/31/2008	ME	16.8	Procedure	0.0000	0.0482			- 300	- 13	9	28	-	444	
vigCl2)3M	19	4/21/2008	19.3	0	Procedure	0.9132	0.0000	10	44		1	. 10	44		444	-
MgCl2J3M	19	4/22/2008		17.61	Procedure	0.0000	0.0505	10	44		- 115	10	44	11	444	
AgCl2 3M	20	4/21/2008	18		Procedure	0.8517	0,0000	10	44	14 58		10	44	4_4		4
vigCl2J3M	20	4/22/2008		17.47	Procedure	0.0000	0.0501	10	44		(0=0	10	44			-
vgCl2)3M	21	7/15/2008	14.5	21.8	Procedure	0.6861	0.0626	22-2	w	-	OK C	9	87	1		-
MgCl2)3M	22	7/15/2008	13.6	20.6	Procedure	0.6435	0.0591		-		- 20	9	87	-	441	-
		3 3 3						-	13	- 58	10		NE IS			

100	5	ICP-AES Date	ICP-AES Raw	ICP-AES Raw		Procedure	Procedure	Dilution Inform	nation			Termination	
Sample ID	100		Conc. Mg (mg/l)	Conc. Ca (mg/l)	Dilution Factor	Mg Molarity (mol/l)	Ca Molarity (mol/l)	Notebook	Page	Notebook	Page	Notebook	Page
(MgCl2)3s	- 1	4/22/2008		18.47	66.67	0.0000	0.0307	10	46	-11 -	187/9	5	75
(MgCl2)3s	2	4/22/2008		18.99	66.67	0.0000	0.0316	10	46			5	75
(MgCl2)3S	3	6/27/2007		20.5	66.67	0.0000	0.0341	6	77	5	84	5	79
(MgCl2)3S	3	6/28/2007	11.9		666.67	0.3264	0.0000	6	77	5	84	5	79
(MgCl2)35	4	6/27/2007		20.6	66.67	0.0000	0.0343	6	77	5	84	5	79
(MgCl2)3\$	4	6/28/2007	21.7		666.67	0.5952	0.0000	6	77	5	84	5	79
(MgCl2)3S	5	6/27/2007	h - 4	42.1	33.33	0.0000	0.0350	6	77	5	84	6	11
(MgCl2)3S	5	6/28/2007	33.3		333.33	0.4567	0.0000	6	.77	5	84	6	11
(MgCl2)3S	6	6/27/2007		43.3	33.33	0.0000	0.0360	6	77	5	84	6	211
(MgCl2)3S	6	6/28/2007	26.3		333.33	0.3607	0.0000	6	77	5	84	6	11
(MgCl2)3s	7	4/22/2008		23.71	66.67	0.0000	0.0394	10	46			6	28
(MgCl2)3s	8	4/22/2008		24,37	66.67	0.0000	0.0405	10	46			6	28
(MgCt2)3s	9	4/22/2008		8.679	200.00	0.0000	0.0433	10	46			6	29
(MgCl2)3s	10	4/22/2008		10.03	200.00	0.0000	0.0501	10	46			6	29
(MgCl2)3s	- 11	4/22/2008	E 12/1	9.121	200.00	0.0000	0.0455	10	46	10		6	50
(MgCl2)3s	12	4/22/2008		9.422	200.00	0.0000	0.0470	10	46	1 300		6	50
(MgCl2)3s	13	1/24/2008	12		Procedure	0.5678	0.0000					5	98
(MgCl2)3s	13	1/30/2008		23.1	Procedure	0.0000	0.0663					5	98
(MgCl2)3s	14	1/24/2008	12.4		Procedure	0.5867	0.0000					- 5	98
(MgCl2)3s	14	1/30/2008	年 2 1 三	22.3	Procedure	0.0000	. 0.0640					5	98
(MgCl2)3s	15	9/5/2007	16		Procedure	0.7570	0.0000			10.00	3	6	84
(MgCl2)3s	15	9/5/2007		18.8	Procedure	0.0000	0.0539					6	84
(MgCl2)3s	16	9/5/2008	15.9		Procedure	0.7523	0.0000		1		-39	6	84
(MgCl2)3s	16	9/5/2008		18.5	Procedure	0.0000	0.0531					6	84
(MgCl2)3s	17	1/28/2008	15.8		Procedure	0.7476	0.0000		E			9	28
(MgCl2)3s	17	1/31/2008		17.48	Procedure	0.0000	0.0502				1	9	28
(MgCl2)3s	18	1/28/2008	16.6		Procedure	0.7854	0.0000		TITLE			9	28
(MgCl2)3s	18	1/31/2008		1.986	Procedure	0.0000	0.0057			1900		9	28
(MgCt2)3s	19	4/21/2008	18.1		Procedure	0.8564	0.0000	10	44		(E)	10	44
(MgCl2)3s	19	4/22/2008		17.89	Procedure	0.0000	0.0513	10	44		-	10	44
(MgCl2)3s	20	4/21/2008	17,1		Procedure	0.8091	0.0000	10	44			10	44
(MgCt2)3s	20	4/22/2008	W. D. B. T. S. S. S. S. S. S. S. S. S. S. S. S. S.	16.49	Procedure	0.0000	0.0473	10	44			10	44
(MgC12)3s	21	7/15/2008	15		Procedure	0,7097	0.0000	9	89			9	87
(MgCl2)3s	21	7/15/2008		20.8	Procedure	0.0000	0.0597	9	89	10-14	9-35	9	87
(MgCl2)3s	22	7/15/2008	14.9		Procedure	0.7050	0.0000	9	89	-	EST.	9	87
(MgCl2)3s	22	7/15/2008		20	Procedure	0.0000	0.0574	9	89	AT 1879 Y		9	87
												1 1 2 2	

	1	CP-AES Date	ICP-AES Row	ICP-AES Row	-	Procedure	Procedure	Dilution Inform	nation			Termination	
ample ID	-	1	Conc. Mg (mg/l)	Conc. Ca (mg/l)	Dilution Factor	Mg Molarity (mol/l)	Ca Molarity (mol/l)	Notebook	Page	Notebook	Page	Notebook	Page
R20M	1	4/23/2008		7.85	66.67	0.0207	0.0131	10	46		1 3	5	75
R20M	2	4/23/2008	7.46	7.52	66.67	0.0205	- 0.0125	10	46			5	75
R20M	3					0.0000	0.0000					5	79
R20M	4	- 13				0.0000	0.0000	4				5	79
R20M	5	4/23/2008	3.67	9.63	66.67	0.0101	0.0160	10	46			6	28
R20M	6	4/23/2008	6.29	9.78	66.67	0.0173	0.0163	10	46			6	28
R20M	7	4/23/2008	0.847	2.82	200.00	0.0070	0.0141	10	46			6	50
R20M	8	4/23/2008	1.01	3.34	200.00	0.0083	0.0167	10	46			6	50
R20M	9	9/5/2007	0.339		Procedure	0.0160	0.0000		50			6	84
R20M	9	9/5/2007		5.21	Procedure	0.0000	0.0149				100	6	84
R20M	10	9/5/2007	1	5.27	Procedure	0.0000	0.0151	TO SECOND				6	84
R20M	10	9/5/2007	0.265		Procedure	0.0125	0.0000		4			ó	84
R20M	11	1/31/2008		5.43	115.00	0.0000	0.0156					10	9
R20M	12	1/31/2008		4.882	115.00	0.0000	0.0140	STATE OF STREET				10	9
R20M	13	7/15/2008	1.4	6.54	115.00	0.0066	0.0188	- 2				9	87
R20M	14	7/15/2008	1.44	6.29	115.00	0.0068	0.0180				L	9	87
R20s	1	4/23/2008	16.7	- 20	33.33	0.0229	0.0166	10	46			5	75
R20s	2	4/23/2008	15.7	13.6	33.33	0.0215	0.0113	10	46	0 0	1 3	5	75
R20s	3			-14.0		0.0000	0.0000					5	79
R20s	4			1		0.0000	0.0000					5	79
R20S	5	6/27/2007		50.1	6.66	0.0000	0.0083		1	5	84	6	-11
R20S	5	6/27/2007	53.2		6.66	0.0146	0.0000		27	5	84	6	0 1111
R20S	6	6/27/2007	150	47.3	6.66	0.0000	0.0079		-	5	84	6	11
R20S	6	6/27/2007	49.9	- HE CEN	6.66	0.0137	0.0000		-3	5	84	6	11
R20s	7	4/23/2008	12.8	13.5	33.33	0.0176	0.0112	10	46			6	28
R20s	8	4/23/2008	11.7	13.5	33.33	0.0160	0.0112	10	46			6	28
R20s	9		1 学作 多龙			#VALUE!	#VALUE!		ER		600	6	29
R20s	10					#VALUEI	#VALUE!		-2		500	6	29
R20s	11	100	1000			#VALUE!	#VALUEI	BE SO	-		-	6	50
R20s	12					#VALUE!	#VALUEI		- 3			6	50
R20s	13	9/5/2007	2.09	4.1	Procedure	0.0989	0.0118				1	6	84
R20s	14	9/5/2007	1.78	4.46	Procedure	0.0842	0.0128				130	6	84
R20s	15	1/31/2008		4.269	Procedure	0.0000	0.0122	1				10	9
R20s	16	1/31/2008	100	4.221	Procedure	0.0000	0.0121		3/			10	9
R20s	17	7/15/2008	2.47	5.07	115.00	0.0117	0.0145				10-6	9	87
R20s	18	7/15/2008	2.71	5.29	115.00	0.0128	0.0152		1			9	87
	10 5	174 35			404		(A) 第一等	-				TEN T	
	-10					inc.	100000000000000000000000000000000000000	23.5	The same				

	Tens.	CP-AES Date	ICP-AES Raw	ICP-AES Raw		Procedure	Procedure	Dilution Inform	nation		150	Termination		
Sample ID			Conc. Mg (mg/l)	Conc. Ca (mg/l)	Dilution Factor	Mg Molarity (mol/l)	Ca Molarity (mol/l)	Notebook	Page	Notebook	Page	Notebook	Page	
ER3L	1	4/23/2008	58.3	25.8	33.33	0.0800	0.0215	10	46			5	75	
ER3L	2	4/23/2008	14.4	25	33.33	0.0197	0.0208	10	46			5	75	
ER3L	3	6/27/2007	2.11		33.33	0.0029	0.0000			5	84	5	79	
ER3L	3	6/27/2007		23.7	33.33	0.0000	0.0197			5	84	5	79	
ER3L	4	6/27/2007	2.05		33.33	0.0028	0.0000		150	5	84	5	79	
ER3L	4	6/27/2007		23.5	33.33	0.0000	0.0195			5	84	.5	79	
ER3L	5	4/23/2008	0.013	22.2	33.33	0.0000	0.0185	10	46			6	28	
ER3L	6	4/23/2008	-0.011	23.3	33.33	0.0000	0.0194	-10	46			6	28	
ER3L	7	4/23/2008	-0.195	67,3	100.00	-0.0008	0.1679	10	46			6	50	
ER3L	8	4/23/2008	-0.171	61,3	100.00	-0.0007	0.1530	10	46			6	50	
ER3L	9	4/23/2008	40.1	49.1	115.00	0.1897	0.1409	6	84			6	84	
ER3L	10	4/23/2008	39.2	48.7	115.00	0.1855	0.1397	6	84			- 6	84	
ER3M	-1	4/23/2008	10.7	19.2	33.33	0.0147	0.0160	10	46			5	75	
ER3M	2	4/23/2008	10.1	19.8	33.33	0.0139	0.0165	10	46			5	75	
ER3M	3	4/13/2007	55.1		3.33	0,0076	0.0000					5	79	
ER3M	3	6/27/2007		36.9	16.67	0.0000	0.0153			5	84	5	79	
R3M	4	4/13/2007	43.5		3.33	0.0060	0.0000	5			BE	5	79	
ER3M	4	6/27/2007		36.8	16.67	0.0000	0.0153			5	84	5	79	
R3M	5	4/23/2008	-0.224	20.4	33.33	-0.0003	0.0170	10	-46			6	28	
ER3M	6	4/23/2008		21.2	33.33	0.0000	0.0176	10	46	- 44		6	28	
ER3M	7	4/23/2008	-0.114	65.3	10.00	0.0000	0.0163	6	50			6	50	
ER3M	8	4/23/2008	-0.167	65.9	10.00	-0.0001	0.0164	6	50	4000	1 15	6	50	
ER3M	9	2/21/2008	也是原至原作的	7.321	115.00	0.0000	0.0210	6	50		0 3	6	50	
ER3M	10	2/21/2008	The second of	3.165	115.00	0.0000	0.0091	6	50	200	130	6	50	
				THE VICE IN	VEX - S				23	1		-		
			. In 1977					(F) (F) (F)						

		ICP-AES Date	ICP-AES Raw	ICP-AES Raw	1000	Procedure	Procedure	Dilution Inform	nation			Termination	n
ample ID	11 15		Conc. Mg (mg/l)	Conc. Ca (mg/l)	Dilution Factor	Mg Molarity (mol/l)	Ca Molarity (mol/l)	Notebook	Page	Notebook	Page	Notebook	Page
W20L	1	4/22/2008		7.758		0.0000		10	46			5	75
GW20L	2	4/22/2008		7.907	66.67	0.0000	0.0132	10	46		- 70	5	75
SW20L	3					0.0000	0.0000				200	5	79
GW20L	4			15 1 - 55	700	0.0000	0.0000					5	79
SW20L	5	4/22/2008		8.323	66.67	0.0000	0.0138	10	- 46	1	381	6	28
SW20L	5	4/23/2008		8.378		0.0000	0.0139	10	46	15 38		6	28
GW20L	6			8.217	66.67	0.0000	0.0137	10			1 12	6	
GW20L	6			8.269		0.0000	0.0138	10			6.0	6	28
SW20L	7	4/22/2008		3.224	200.00	0.0000	0.0161	10	46	1000	130	6	50
W20L	7	4/23/2008		3.168	200.00		0.0158	10				6	50
GW20L	8	4/22/2008		3.428		0.0000	0.0171	10				6	
W20L	9	9/5/2007	25.0		Procedure	1,1971	0.0000			70. 200	7	6	
W20L	9	9/5/2007			Procedure	0.0000	0.0163				- 31	- 6	84
W20L	10	9/5/2007			Procedure	0.0000	0.0168		-			6	
W20L	10	9/5/2007	25,4		Procedure	1,2018	0.0000				275	6	
W20L	11	2/21/2008	21.7		Procedure	1.0267	#VALUEI					10	11
W20L	11	2/21/2008			Procedure	0.000.0	0.0239					10	u
W20L	12	2/21/2008	23.5		Procedure	1,1308	0.0000		23	TO SEE	150	10	11
W20L	12	2/21/2008	A TOTAL ST		Procedure	#VALUE!	0.0247			1		10	11
W20M	1	4/22/2008		7.099	66.67	0.0000	0.0118	10	46			5	75
W20M	2	4/22/2008		7.907	66.67	0.0000	0.0132	10				5	75
W20M	3	6/27/2007		13.3	33.33	0.0000	0.0111	6	77	5	84	5	79
W20M	3	6/28/2007	62.5		333.33	0.8572	0.0000	6	77	5	84	5	79
W20M	4	6/27/2007		12.8	33.33	0.0000	0.0106	- 6	77	- 5	84	5	79
W20M	4	6/28/2007	59.5		333.33	0.8160	0.0000	6	77	5	84	5	79
W20M	5	4/22/2008	000	8.275	66.67	0.0000	0.0138	10	46			6	28
W20M	5	4/22/2008	STATE OF THE PARTY.	8,208	66.67	0.0000	0.0137	10	46		-33	6	28
W20M	6	4/22/2008	EN	8.046	66.67	0.0000	0.0134	10	46	E	9	6	28
W20M	6	4/22/2008	E 14/1/2 = 1	8.222	66.67	0.0000	0.0137	10	46			6	28
W20M	7	4/22/2008	100	3.083	200.00	0.0000	0.0154	10	46	V- 30	1	6	50
W20M	7	4/22/2008		3.074	200.00	0.0000	0.0153	10	46	333		6	50
W20M	8	4/22/2008		2.834	200.00	0.0000	0.0141	10	46			6	50
W20M	9	9/5/2007	(a	5.87	Procedure	0.0000	0.0168					6	84
W20M	9	9/5/2007	23.6		Procedure	1.1166	0.0000	0.5 3	200	9	7	6	84
SW20M	10	9/5/2007			Procedure	0.0000	0.0173		93		EF	6	84
W20M	- 10	9/5/2007	23.8		Procedure	1.1261	0.0000	15	9		5	6	84
W20M	-11	2/21/2008	22.8		Procedure	1.0693	0.0000					10	9
SW20M	11	2/21/2008			Procedure	0.0000	0.0250		1		190	10	9
SW20M	12	2/21/2008	21,8		Procedure	1.0315	0.0000		1			10	9
W20M	12	2/21/2008			Procedure	0.0000	0.0239	30	100	- 2	-	10	9
GW20M	12	2/21/2008		8.328	Procedure	0.0000	0.0239					10	7

		ICP-AES Date	ICP-AES Raw	ICP-AES Raw		Procedure	Procedure	Dilution Inform	nation			Termination				
Sample ID		- 01	Conc. Mg (mg/l)	Conc. Ca (mg/l)	Dilution Factor	Mg Molarity (mol/l)	Ca Molarity (mol/l)	Notebook	Page	Notebook	Page	Notebook	Page			
GW3M	1	4/23/2008		17.2	33.33	0.0000	0.0143	10	46		1	5	75			
GW3M	1	4/23/2008	66	0	333.33	0.9052	#VALUE!	10	46			5	75			
GW3M	2	4/23/2008		17.8	33.33	0.0000	0.0148	10	46			5	75			
GW3M	2	4/23/2008	64.6		333.33	0.8860	#VALUEI	10	46			5	75		11	
GW3M	3	6/27/2007		36.7	166.67	0.0000	0.1526	6	77	5	84	5	79	11		
GW3M	3	6/28/2007	11.5		1666.67	0.7886	0.0000	6	77	5	84	5	79			
GW3M	4	6/27/2007		44.4	166.67	0.0000	0.1846	6	77.	5	84	5	79		11	
GW3M	4	6/28/2007			1666.67	0.0000	0.0000	6	77	5	84	5	79			
GW3M	5	4/23/2008	61.1		333.33	0.8380	#VALUE!	10	46			6	28		11	
GW3M	5	4/23/2008		18,3	33.33	0.0000	0.0152	10	46	X-3-1	100	6	28		11	-
GW3M	6	4/23/2008		16.8	33.33	0.0000	0.0140	10	46	THE LIE	F	6	28		11.	
GW3M	6	4/23/2008	57		333.33	0.7817	#VALUEI	10	-			- 6	28		11	
GW3M	7	4/23/2008		7.25	100.00	0.0000	0.0181	10	46		- 7	6	50		44	
GW3M	7	4/23/2008	18.5		1000.00	0.7612	#VALUE!	10	- 46			6	50		44	
GW3M	8	4/23/2008	16.9		1000.00	0.6953	0.0000	10	46		100	- 6	50		44	ļ
GW3M	8	4/23/2008		6.51	100.00	0.0000	0.0162	10	46			[SEN			11	-
GW3M	9	9/5/2007		5.93	Procedure	0.0000	0.0170		100			6			11	1
GW3M	9	9/5/2007	16.4		Procedure	0.7760	0.0000		-			6	84		11	
GW3M	10	9/5/2007	16.4		Procedure	0.7760	0.0000					6	84		44	1
GW3M	- 10	9/5/2007		5.99	Procedure	0.0000	0.0172		200		- 1	6	84		1	ļ
GW3M	11	1/28/2008	16.2		Procedure	0.7665	0.0000				7	10	9		11	
GW3M	- 11	1/31/2008		5.301	Procedure	0.0000	0.0152				-	10	9		11	
GW3M	12	1/28/2008	16		Procedure	0.7570	0.0000					10	9			
GW3M	12	1/31/2008	E 5. 18(1)968	5.443	Procedure	0.0000	0.0156				138	10	9			
GW3M	13	7/15/2008	12.5	6.49	Procedure	0.5914	0.0186					9	87			
GW3M	14	7/15/2008	14.4	7.52	Procedure	0.6813	0.0216					9	87			

	1	ICP-AES Dafe	ICP-AES Raw	ICP-AES Raw	2	Procedure	Procedure	Dilution Inform	nation			Termination	1				
Sample ID			Conc. Mg (mg/l)	Conc. Ca (mg/l)	Dilution Factor	Mg Molarity (mol/l)	Ca Molarity (mol/l)	Notebook	Page	Notebook	Page	Notebook	Page				
GW3S	- 1	4/22/2008		11.86	66.67	0.0000	0.0197	10	46			5	75				
GW3S	2			1	66.67	0.0000	0.0000	10	46			5	75				
GW3S	3	6/27/2007		10.6	66.67	0.0000	0.0176	6	77	5	84	5	79				
GW3S	3	6/28/2007	26.4		666.67	0.7241	0.0000	6	77	5	84	5	79				
GW3S	4	6/27/2007		10.1	66.67	0.0000	0.0168	6	77	5	84	5	79				
GW3S	4	6/28/2007	24.5		666.67	0.6720	0.0000	6	77	5	84	5	79		11		
GW3S	5	6/27/2007	200	8.62	66.67	0.0000	0.0143	6	77	5	84	6	11				
GW3S	5	6/28/2007	23.5		666.67	0.6446	0.0000	6	77	5	84	6	_11		Ш		
GW3S	6	6/27/2007		9.14	66.67	0.0000	0.0152	- 6	77	5	84	6	11		11		
GW3S	6	6/28/2007	20.9		666.67	0.5733	0.0000	6	77	5	84	6	11		11	11	
GW3S	7	4/22/2008		10.91	66.67	0.0000	0.0181	10	46			6	28			Ш	
GW3S	7	4/22/2008		9,48	66.67	0.0000	0.0158	10	46			6	28				
GW3S	8	4/22/2008	-	11.1	66.67	0.0000	0.0185	10	46	A 1 1 1 1 1	100	- 6	28				
GW3S	8	4/23/2008		10.04	66.67	0.0000	0.0167	10	46			6	28				
GW3S	9	4/22/2008		3,427	200.00	0.0000	0.0171	10	46			6	29		11		
GW3S	9	4/23/2008	100	3.324	200.00	0.0000	0.0166	10	46			6	29		Ш		
GW3S	10	4/23/2008	87.3	3.52	200.00	0.7184	0.0176	10	46		1	6	29		Ш		
GW3S	- 11	4/23/2008	88.1	3.66	200.00	0.7250	0.0183	10	46	1200	1	6	50		11	44	
GW3S	12	4/23/2008	85.7	3.47	200.00	0.7052	0.0173	10	46	- 3	5 18	- 6	50		11	11	
GW3S	13	9/5/2007	18.7		Procedure	0.8848	0.0000	1-9-4-5				6	84		11	11	
GW3S	13	9/5/2007		6.08	Procedure	0.0000	0.0174		F	- 72		6	84		11	44	
GW3S	14	9/5/2007	18.7		Procedure	0.8848	0.0000	775	198			6	84		11	11	
GW3S	14	9/5/2007		5.97	Procedure	0.0000	0.0171	BEET			1000	6	84		11	11	
GW3S	15	1/28/2008	17.8		Procedure	0.8422	0.0000	1000	F			9	. 28		11	11	
GW3S	15	1/31/2008		5.205	Procedure	0.0000	0.0149		1-0			9	28		11		
GW3S	16	1/28/2008	18.5		Procedure	0.8753	0.0000					9	28		11	11	
GW3S	16	1/31/2008		5.262	Procedure	0.0000	0.0151		E			9	28		11	11	
GW3S	. 17	7/15/2008	16.7	7.74	Procedure	0.7902	0.0222	ALE CAL	1			9	87		11	11	
GW3S	18	7/15/2005	13.8	6.5	Procedure	0.6530	0.0187		200			9	87	-	++	44	
									8 5						++		100

Raw Data:

The ICP-AES analysis date in column C is recorded in the supplemental binder "MMMgO-ICP-AES-1".

The Mg concentration in ppm (mg/l) in column D can be found in supplemental binder "MMMgO-ICP-AES-1",

which is organized by the analysis date, which is given in column C.

The Ca concentration in ppm (mg/l) in column E can be found in supplemental binder "MMMgO-ICP-AES-1" in the same way as the Mg data.

The Dilution information is recorded in the scientific notebook ,see column I, J, K, Ł, and M, N

The notebook numbers in columns I and N correspond to WIPP-MM MgO-#

Termination information (sample collection date) is can be found in the scientific notebook ,see column M, N

Calculations:

The dilution factor in column F can be found in the scientific notebooks ,see column I, J, K, L, M, N.

Column F can be a number or "procedure":

"Procedure" can be found in WIPP-MMMgO-6, P79.

If column F = procedure, then the sample hydrated in GWB or Simplified GWB has been diluted 1150 times for Mg analysis

If column F = procedure, then the sample hydrated in GWB or Simplified GWB has been diluted 115 times for Ca analysis

If column F = procedure, then the sample hydrated in ERDA-6 has been diluted 115 times for Ca analysis

If column F = procedure, then the sample hydrated in ERDA-6 has been diluted 1150 times for Mg analysis.

Note the dilution factor for the sample hydrated in ERDA-6 for Mg analysiswas was changed to 115 after 12/14/07.

To make the calculation simple, set the dilution factor to 115 for sample diluted after 12/14 /07.

If column F is not = procedure, then the sample dilution factor is calculated from dilution process documented in the scientific notebook, see columns I, J, K, L, M, N.

For example, Cell F282 = 20x10 = 200. Sample GW3S12 was first diluted 10 times (documented on WIPP-MMMgO-6,p50), then diluted 20 times (WIPP-MMMgO-10, P46).

The Mg molarity (mol/l) in column G = Mg concentration in column D (mg/l) X dilution factor in column F/ 1000 (conversion from mg/l to g/l) / 24.305 (molecular weight of Mg)

The Ca molarity in column H = Ca concentration in column E (mg/l) X dilution factor in column F / 1000 (conversion from mg/l to g/l) / 40.078 (molecular weight of Ca)

Output:

The Mg molarity (mol/l) in column G and Ca molarity in column H is inputted into the Excel file "plots(review)", on worksheet "raw data", on columns S, T, AE, AF, BC, BD, BR, BS.

Reaction $HSO_4^- = H^+ + SO_4^{2-}$

Brine H+ (M) SO42- (M) HSO4- (M) H+ (m) SO42- (m) HSO4- (m) log Ka, molar scale log Ka, molal scale

GWB 3.34709E-09 1.68809E-01 5.14351E-09 3.81225E-09 1.92269E-01 5.85831E-09 -0.9592 -0.9027 ERDA-6 5.10858E-02 9.93138E-02 7.14942E-02 5.74481E-02 1.11682E-01 8.03982E-02 -1.1490 -1.0980

These values can be found in the FMT files: fmt_aciddis_2009_msrpt_GWB_001.OUT; fmt_aciddis_2009_msrpt_erda6_002.OUT, which are located in CMS in the class LIBACIDDIS_FMT

Page 1 of 1
Brine acid base titration.xls
Datasheet "constant"

Web Court

This worksheet is a summary of the slopes obtained from titrating ERDA-6, simplified GWB, and GWB with HCI
The slopes for each row below can be found on the corresponding worksheet, for example for row 5 see the worksheet titled "ERDA with HCI1"

ERDA-6

	siope		log(slope)	R2	
HCl 1		13.959	1.144854	0.9934	1.155 Avg of log(slope)
HCI 2		14.127	1.15005	0.9994	0.013 Standard deviation of log(slope)
HCI 3		14.785	1.169821	0.9997	

Simple GWB

	siope	log(slope)	RZ .	<u> </u>
HCI 1	15.587	1.192763	0.9924	1.206 Avg of log(slope)
HCI 2	15.481	1.189799	0.995	0.025 Standard deviation of log(slope)
HCI 3	17.169	1.234745	0.9926	

GWB

	slope	log(slope)	R2	
HCI 1		16.686 1.222352	0.9998	1.236 Avg of log(slope)
HCI 2		18.124 1.258254	0.9996	0.019 Standard deviation of log(slope)
HCI 3		16.896 1.227784	0.9995	

Page 1 of 1

Brine acid base titration.xls

Datasheet "sum"

Brine: GWB

Temperature:25.02°C

Start Time: 5:00pm End Time: 6:05pm

Titrant 1.00M HCI

Notebook and pg: Wipp-MMMgO-14 p.15

0.0005.00
0.000E+00
3.563E-04
7.120E-04
1.067E-03 1.421E-03
1.421E-03 1.775E-03
2.128E-03
2.128E-03 2.480E-03
2.832E-03
3.534E-03
4.232E-03 4.929E-03

1+ (1/Ka) x [SO42-] = 2.620E+00

Data location

Wipp-MMMgO-14 p.15

Calculation steps:

- 1 H+ Observed in column D = 10^-pH observed in column C
- 2 Plot pH observed (column C) against total acid added (column B), Figure 1, and determine the equivalence volume, 3.50 ml
- 3 H+ added in column E =
- (Total added acid in column B equivalence volume 3.50 ml) x HCl concentration/(Brine volume 50ml + Total volume of added acid in column B) HCl concentration is given in notebook wipp-FePb-1, p6 and p21.

 4 H+ free in column F = H+ added in column E/ value in cell I27 using equation (6) in section 3.3 of the report.

- 5 Here cell 127 = 1+ (1/Ka)x [SO42-] with Ka =10^(-0.9592), where Ka is given in worksheet "constant", and the concentration of sulfate [SO42-] = 0.178 M in GWB according to SP20-4 appendix B.
- 6 Plot H+ observed in column D aginst H+ free (column F) and get slope of line, 15.428.
- 7 Correction factor A = log(slope in Figure 2)
- 8 Input slope and log (slope) in worksheet "sum" to get the average of A from three titrations

Figure 1. pH versus HCl added

Figure 2. H+ Observed versus H+ Free

slope log(slope) R2 16.686 1.222352 0.9998 Brine: GWB Titrant 1.00M HCI

Temperature:24.85°C Start Time: 10:35am

End Time: 11:48am

Notebook and pg: Wipp-MMMgO-14 p.16

amt added mL	Total Added mL	pH observed	H+ Observed (M)	HCI added (M)	H+ free (M
.0	0	7.47	3,388E-08	0.000E+00	
0.1	0.1		3.715E-08	1.996E-03	
0.1	0.2	7.4	3.981E-08	3.984E-03	
0.1	0.3	7.37	4.266E-08	5.964E-03	
0.1	0.4	7.33	4.677E-08	7.937E-03	
0.1	0.5	7.3	5.012E-08	9.901E-03	
0.1	0,6	7.27	5.370E-08	1.186E-02	
0.1	0.7	7.23	5.888E-08	1.381E-02	
0.1	0.8	7.2	6.310E-08	1.575E-02	
0.1	0.9	7.17	6.761E-08	1.768E-02	
0.1	1	7.13	7.413E-08	1.961E-02	
0.1	1.1	7.09	8.128E-08	2.153E-02	
0.1	1.2	7.06	8.710E-08	2.344E-02	
0.1	1.3	7.02	9.550E-08	2.534E-02	
0.1	1.4	6.98	1.047E-07	2.724E-02	-
0.1	1.5	6.94	1.148E-07	2.913E-02	
0.1	1.6	6.9	1.259E-07	3.101E-02	
0.1	1.7	6.86	1,380E-07	3.288E-02	
0.1	1.8	6.82	1.514E-07	3.475E-02	
0.1	1.9	6.78	1.660E-07	3.661E-02	
0.1	2	6.73	1.862E-07	3.846E-02	
0.1	2.1	6.68	2.089E-07		
0.1	2.2	6.63	2.344E-07	4.031E-02	
0.1	2.3	6.56	2.754E-07	4.215E-02	
0.1	2.4	6.52		4.398E-02	
0.1	2.5	6.46	3.020E-07	4.580E-02	
0.1	2.6	6.35	3.467E-07 4.467E-07	4.762E-02	
0.1	2.7	6.31		4.943E-02	
0.1	2.8	6.23	4.898E-07	5.123E-02	
0.1	2.9	6.13	5.888E-07	5.303E-02	
0.05	2.95	6.08	7.413E-07	5.482E-02	
0.05	3	6.02	8.318E-07	5.571E-02	
0.05	3.05	5.92	9.550E-07	5.660E-02	
0.05	3.1	5.86	1.202E-06	5.749E-02	
0.05	3.15		1.380E-06	5.838E-02	
0.05	3.2	5.8	1.585E-06	5.927E-02	
0.05	3.25	5.69	2.042E-06	6.015E-02	
0.05	3.3	5.56	2.754E-06	6.103E-02	
0.05	3.35	5,39	4.074E-06	6.191E-02	
0.05	3.4	5.12	7,586E-06	6,279E-02	
0.05	3.45	4.5	3.162E-05	0.000E+00	
0.05		2.44	3.631E-03	9.355E-04	3,570E-0
0.05	3.5	2.02	9.550E-03	1.869E-03	7.133E-0
0.05	3.55	1.8	1,585E-02	2.801E-03	1.069E-0
0.05	3.6	1.66	2.188E-02	3.731E-03	1.424E-0
0.05	3.65	1.55	2,818E-02	4.660E-03	1.778E-0
0.05	3.7	1,46	3.467E-02	5.587E-03	2.132E-0
	3.75	1.39	4.074E-02	6.512E-03	2.485E-0
0.05	3.8	1.32	4.786E-02	7.435E-03	2.837E-0
0.05	3.85	1.27	5.370E-02	8.357E-03	3.189E-0
0.1	3.95	1.18	6.607E-02	1.019E-02	3.890E-0
0.1	4.05	1.1	7.943E-02	1.203E-02	4.589E-0
0.1	4.15	1.03	9.333E-02	1.385E-02	5.286E-0

1+ (1/Ka) x [SO42-] = 2.620E+00

Data location Calculation steps:

Wipp-MMMgO-14 p.16

1 H+ Observed in column D = 10^-pH observed in column C

2 Plot pH observed (column C) against total acid added (column B), Figure 1, and determine the equivalence volume, 3.40 ml

3 H+ added in column E =

(Total added acid in column B - equivalence volume 3.40 ml) x HCl concentration/(Brine volume 50ml + Total volume of added acid in column B) HCl concentration is given in notebook wipp-FePb-1, p6 and p21.

4 H+ free in column F = H+ added in column E/ value in cell I46 using equation (6) in section 3.3 of the report.

5 Here cell I46 =1+ (1/Ka)x [SO42-] with Ka =10^(-0.9592),

where Ka is given in worksheet "constant", and the concentration of sulfate [SO42-] = 0.178 M in GWB according to SP20-4 appendix B.

6 Plot H+ observed in column D aginst H+ free (column F) and get slope of line, 16.757

7 Correction factor A = log(slope in Figure 2)

8 Input slope and log (slope) in worksheet "sum" to get the average of A from three titrations

Figure 1. pH versus HCl added

Figure 2. H+ observed versus H+ free

slope log(slope) R2 18.124 1.258254 0.9996 Brine: GWB

Temperature:24.75°C Start Time: 1:46pm End Time: 4:04pm

Titrant 1.00M HCI

Notebook and pg: Wipp-MMMgO-1	
The state of the s	p.17

amt added mL	Total Added mL	pH observed	H+ Observed (M)	HCI added (M)	H+ free (M)
0	0	7.51	3.090E-08	0.000E+00	
0.1	0.1	7.47	3.388E-08	1.996E-03	
0.1	0.2	7.44	3.631E-08	3.984E-03	
0.1	0.3	7.4	3.981E-08	5.964E-03	
0.1	0.4	7.37	4,266E-08	7.937E-03	
0.1	0.5	7.34	4.571E-08	9.901E-03	
0.1	0,6	7.3	5.012E-08	1.186E-02	
0.1	0.7	7.27	5.370E-08	1.381E-02	
0.1	0.8	7.23	5.888E-08	1.575E-02	
0.1	0.9	7.2	6.310E-08	1.768E-02	
0.1	1	7.16	6.918E-08	1.961E-02	
0.1	1.1	7.13	7.413E-08	2.153E-02	
0.1	1.2	7.09	8.128E-08	2.344E-02	1
0.1	1.3	7.05	8.913E-08	2.534E-02	
0.1	1.4	7.01	9.772E-08	2.724E-02	
0.1	1.5	6.97	1.072E-07	2.913E-02	
0.1	1.6	6.93	1.175E-07	3.101E-02	
0.1	1.7	6.89	1.288E-07	3.288E-02	
0.1	1.8	6.84	1.445E-07	3.475E-02	
0.1	1.9	6.8	1.585E-07	3.661E-02	
0.1	2	6.75	1.778E-07	3.846E-02	
0.1	2.1	6.7	1.995E-07	4.031E-02	_
0.1	2.2	6.65	2.239E-07	4.215E-02	
0.1	2.3	6.59	2.570E-07	4.398E-02	
0.1	2.4	6.53	2.951E-07	4.580E-02	
0.1	2.5	6.47	3.388E-07	4.762E-02	
0.1	2.6	6.4	3.981E-07	4.943E-02	
0.1	2.7	6.31	4.898E-07	5.123E-02	
0.1	2.8	6.22	6.026E-07	5.303E-02	
0.05	2.85	6.12	7.586E-07	5.393E-02	
0.05	2.9	6.06	8.710E-07	5.482E-02	
0.05	2.95	5.99	1.023E-06	5.571E-02	
0.05	3	5.91	1,230E-06	5.660E-02	
0.05	3.05	5.82	1.514E-06	5.749E-02	
0.05	3.1	5.58	2.630E-06	5.838E-02	
0.05	3.15	5.4	3,981E-06	5.927E-02	
0.05	3.2	5.1	7.943E-06	6.015E-02	
0.05	3.25	4.24	5.754E-05	6.103E-02	
0.05	3.3	2.38	4.169E-03	0.000E+00	0.000E+0
0.05	3.35	2.01	9.772E-03	9.372E-04	3.577E-0
0.05	3.4	1.82	1,514E-02	1.873E-03	7.146E-0
0.05	3.45	1.68	2.089E-02	2.806E-03	1.071E-0
0.05	3.5	1.57	2,692E-02	3.738E-03	1,427E-0
0.05	3,55	1.49	3.236E-02	4.669E-03	1.782E-0
0.05	3.6	1.41	3.890E-02	5.597E-03	2.136E-0
0.05	3.65	1.35	4,467E-02	6.524E-03	2.490E-0
0.05	3.7	1.3	5.012E-02	7.449E-03	2.843E-0
0.05	3.75	1.25	5.623E-02	8.372E-03	3.195E-0
0.05	3.8	1.2	6.310E-02	9.294E-03	3.547E-0
0.05	3.85	1.16	6.918E-02	1.021E-02	3.898E-0
0.05	3.9	1.13	7,413E-02	1.113E-02	4,248E-0
0.05	3.95	1.09	8,128E-02	1.205E-02	4.598E-0
0.05	4	1.06	8.710E-02	1.296E-02	4.947E-0
0.05	4.05	1.03	9.333E-02	1.388E-02	5,295E-0

+ (1/Ka) x [SO42-] =

2.620E+00

Data location: Calculation steps: Wipp-MMMgO-14 p.17

1 H+ Observed in column D = 10^-pH observed in column C

2 Plot pH observed (column C) against total acid added (column B), Figure 1, and determine the equivalence volume, 3.30 ml

3 H+ added in column E =

(Total added acid in column B - equivalence volume 3.30 ml) x HCl concentration/(Brine volume 50ml + Total volume of added acid in column B) HCI concentration is given in notebook wipp-FePb-1, p6 and p21.

4 H+ free in column F = H+ added in column E/ value in cell H43 using equation (6) in section 3.3 of the report.

5 Here cell H43 =1+ (1/Ka)x [SO42-] with Ka =10^(-0.9592),

where Ka is given in worksheet "constant", and the concentration of sulfate [SO42-] = 0.178 M in ERDA-6 according to SP20-4 appendix B.

6 Plot H+ observed in column D aginst H+ free (column F) and get slope of line, 15.622.

7 Correction factor A = log(slope in Figure 2)

8 Input slope and log (slope) in worksheet "sum" to get the average of A from three titrations

Figure 1. pH versus HCl added

Figure 2. H+ observed versus H+ free

slope log(slope) R2 16.896 1.227784 0,9995 Brine: 1MgCl2 + 3. Temperature:24.95°C

Titrant .01M HCI

Start Time: 2:30pm End Time: 4:45pm

Data location: Wipp-MMMgO-14 p.18

	************			H+ added
amt added mL	Total Added acid mL	pH observed	H+ observed (M)	(M)
0	0	6.14	7.24436E-07	
0.025	0.025	6.04	9.12011E-07	4.9975E-06
0.025	0.05	5.92	1.20226E-06	9.99E-06
0.025	0.075	5.82	1.51356E-06	1.4978E-05
0.025	0.1	5.64	2.29087E-05	1,996E-05
0.025	0.125	5.56	2.75423E-06	2.4938E-05
0.025	0.15	5.46	3.46737E-06	2.991E-05
0.025	0.175	5.37	4.2658E-06	3.4878E-05
0.025	0.2	5.26	5.49541E-06	3.9841E-05
0.025	0.225	5.17	6.76083E-06	4.4798E-05
0.025	0.25	5.02	9.54993E-06	4.9751E-05
0.025	0.275	4.94	1.14815E-05	5.4699E-05
0.025	0.3	4.87	1.34896E-05	5.9642E-05
0.025	0.325	4.77	1.69824E-05	6.458E-05
0.025	0.35	4.64	2.29087E-05	6.9513E-05
0.025	0.375	4.5	3.16228E-05	7.4442E-05
0.025	0.4	4.34	4.57088E-05	7,9365E-05
0.025	0.425	4.15	7.079485-05	8.4284E-05
0.025	0.45	3.96	0.000109648	8.9197E-05
0.025	0.475	3.8	0.000158489	9.4106E-05
0.025	0.5	3.66	0.000218776	9.901E-05
0.025	0.525	3.5	0.000316228	0.00010391
0.025	0.55	3.45	0.000354813	0.0001088
0.025	0.575	3.38	0.000416869	0.00011369
0.025	0.6	3.31	0.000489779	0.00011858
0.05	0.65	3.2	0.000630957	0.00012833
0.05	0.7	3.11	0.000776247	0.00013807
0.05	0.75	3.03	0.000933254	0.00014778
0.05	0.8	2.97	0.001071519	0.00015748
0.05	0.85	2.91	0.001230269	0.00016716
0.05	0.9	2.86	0.001380384	0.00017682
0.1	1	2.78	0.001659587	0.00019608
0.1	1.1	2.7	0.001995262	0.00021526
0.1	1.2	2.64	0.002290868	0.00023438
0.1	1.3	2.59	0.002570398	0.00025341
0.1	1.4	2.55	0.002818383	0.00027237
0.1	1,5	2.5		0.00029126
0.2	1.7	2.43		0,00032882
0.2	1.9	2.37		0.00036609
0.2	2.1	2.33		0.00040307
0.2	2.3	2.28		0.00043977
0.3	2.8	2.22	0.008025596	0.0004943
0.3	2.9	2.1	0.007943282	0.0005482

Figure 1. H+ Observed versus H+ added

log(slope) R2 15.587 1.192763 0.9924

Wipp-MMMgO-14 p.18 Data location: Calculation steps

1 H+ Observed in column D = 10^- pH observed in column C

2 H+ added in column E =

Total added acid in column B x HCl concentration/(Brine volume 50ml + Total added acid in cloumn B)

HCI concentration is given in notebook wipp-mmmgo-14 p18.

3 Plot H+ observed in column D aginst H+ added (column E) and get slope of line 15.587. Note, not all of the data was used. The cyan bar above indicates where the data set used in the regression begins.

4 Correction factor A = log(slope)

5 Input slope and log (slope) in datasheet "sum" to get the average of A from three titrations

Brine: 1MgCl2 + 3.6M NaCl Temperature:24.90°C Start Time: 9:00am Titrant .01M HCl End Time: 11:12am Data location: Wipp-MMMgO-14 p.19

				H+ observed	
amt. added (mL)	To	tal added acid (mL)	pH observed	(M)	H+ added (M)
	0	.0	6.1	2 7.58578E-07	0
	0.025	0.025		6 0.000001	4.9975E-06
	0.025	0.05	5.8	9 1.28825E-06	9.99001E-06
	0.025	0.075	5.7	5 1.77828E-06	1.49775E-05
	0.025	0.1	5.6	4 2.29087E-06	1.99601E-05
	0.025	0.125	5.5	2 3.01995E-06	2.49377E-05
	0.025	0.15	5.4	1 3.89045E-06	2.99103E-05
	0.025	0.175	5.	3 5.01187E-06	3,48779E-05
	0.025	0.2	5.1	9 6.45654E-06	3,98406E-05
	0.025	0.225	5.0	9 8.12831E-06	4.47984E-05
	0.025	0.25	4.9	9 1.02329E-05	4.97512E-05
	0.025	0.275	4.8	9 1.28825E-05	5.46992E-05
	0.025	0.3	4.7	9 1.62181E-05	5.96421E-05
	0.025	0.325	4.6	8 2.0893E-05	6.45802E-05
	0.025	0.35	4.5	7 2.69153E-05	6.95134E-05
	0.025	0.375	4.4	3.71535E-05	7.44417E-05
	0.025	0.4	4.2	7 5.37032E-05	7.93651E-05
	0.025	0.425	4.		6.42836E405
	0.025	0.45	3.9		
	0.025	0.475	3.7		
	0.025	0.5	3.6		
	0.025	0.525	3.5		
	0.025	0.55	3.4		0.000108803
	0.025	0.575	3.3	5 0.000446684	0.000113693
	0.025	0.6	3.2		0.000118577
	0.05	0.65	3.1	0.000691831	0.000128332
	0.05	0.7	3.0		
	0.05	0.75	2.9		
	0.05	0.8	2.9		
	0.1	0.9	2.8	0.001548817	0.000176817
	0.1	1	2.7		0.000196078
	0.1	1.1			0.000215264
	0.1	1.2	2.5		
	0.1	1.3	2.5		
	0.1	1.4	2.4		0.000272374
	0.2	1.6	2.4		0.000310078
	0.2	1.8	2.3		
	0.2	2	2.3		0.000384615
	0.2	2.2	2.20		0.000304015
	0.2	2.4	2.24		0.000458015
	0.2	2.6	2.2		0.000494297
	0.2			1	0

Figure 1. H+ observed versus H+ free

slope log(slope) R2 15.481 1.189799 0.995

Tipp miningo 14 p. 10

Data location Calculation steps

1 H+ Observed in column D = 10^- pH observed in column C

2 H+ added in column E =

Total added acid in column B x HCl concentration/(Brine volume 50ml + Total added acid in cloumn B)

HCl concentration is given in notebook wipp-mmmgo-14 p18.

3 Plot H+ observed in column D aginst H+ added (column E) and get slope of line 15.481. Note, not all of the data was used. The cyan bar above indicates where the data set used in the regression begins

4 Correction factor A = log(slope)

5 Input slope and log (slope) in datasheet "sum" to get the average of A from three titrations

Brine: 1MgCl2 + 3.6M NaCl Titrant .01M HCI

Temperature:24.93'C Start Time: 12:20pm

End Time: 1:09pm

Notebook and pg.: Wipp-MMMgO-14 p. 20

amt added mL	amt added mL	Total Added acid mL	pH observed	H+ observed (M)	H+ added (M)
0		0	6.13	7.4131E-07	(
0.025		0.025	6.04	9.12011E-07	4.9975E-06
0.025		0.05	5.92	1.20226E-06	9.99001E-06
0.025		0.075	5.77	1.69824E-06	1.49775E-05
0.025	0.000	0.1	5.65	2.23872E-06	1.99601E-05
0.025		0.125	5.56	2.75423E-06	2.49377E-05
0.025		0.15	5.45	3.54813E-06	2.99103E-08
0.025		0.175	5.31	4.89779E-06	3.48779E-0
0.025		0.2	5.21	6.16595E-06	3.98406E-0
0.025			5.1	7.94328E-06	4,47984E-0
0.025	4,100	0.25	4.98	1.04713E-05	4,97512E-0
0.025		0.275	4.89	1.28825E-05	5.46992E-0
0.025			4.79	1.62181E-05	5,96421E-0
0.025		0.325	4.68	2.0893E-05	6.45802E-0
0.025			4.53	2.95121E-05	6.95134E-0
0.025		0.375	4.42	3.80189E-05	7.44417E-0
0.025			4.26	5.49541E-05	7.93651E-0
0.025			4.11	7.76247E-05	8.42836E-0
0.025		41.15	3.96	0.000109648	8.91972E-0
0.025			3.79	0.000162181	9.4106E-0
0.025			3.65	0.000223872	9.90099E-0
0.025			3.54	0.000288403	0.00010390
0.025			3.44	0.000363078	0.00010880
0.025			3.36	0.000436516	
0.025				0.000512861	0.00011857
0.025				0.000588844	0.00012345
0.05				0.000758578	0.00013320
0.05			3.03	0.000933254	0.00014292
0.05				0.001096478	0.00015263
0.05			2.89	0.00128825	0.00016232
0.05			2.84	0.00144544	0.0001719
0.1				0.001819701	0.0001912
0.1				0.002137962	0.00021047
0.1		1.175	2.6	0.002511886	0.00022960
0.1				0.002754229	0.00024865
0.2				0.003548134	0.00028654
0.2				0.004168694	0.00032414
0.2				0.004786301	0.00036144
0.2				0.005370318	0.00039846
0.2				0.006025596	

Figure 1. H+ observed versus H+ free

slope log(slope) R2 17.169 1.234745 0.9926

Data location Calculation steps Wipp-MMMgO-14 p. 20

- 1 H+ Observed in column D = 10^- pH observed in column C
- 2 H+ added in column E =
- Total added acid in column B x HCl concentration/(Brine volume 50ml + Total added acid in cloumn B) HCI concentration is given in notebook wipp-mmmgo-14 p18.
- 3 Plot H+ observed in column D aginst H+ added (column E) and get slope of line 17.169. Note, not all of the data was used. The cyan bar above indicates where the data set used in the regression begins.
- 4 Correction factor A = log(slope)
- 5 Input slope and log (slope) in datasheet "sum" to get the average of A from three titrations

Brine: EDRA-6 Titrant 1.00M HCI Temperature:25.09'C

Start Time: 3:00pm End Time: 3:57pm

Notebook and pg:

Wipp-MMMgO-14 p.12

	+ free (M)	H+ added (M)	H+ Observed (M)		Total Added acid mL	Amt added mL
		- W. W.	1.096E-08	7.96	0	0
			1.175E-08	7.93	0.05	0.05
			1,259E-08	7.9	0.1	0.05
			1.380E-08	7.86	0.15	0.05
			1.514E-08	7.82	0.2	0.05
			1.622E-08	7.79	0.25	0.05
			1.738E-08	7.76	0.3	0.05
			1.905E-08	7.72	0.35	0.05
			2.138E-08	7.67	0.4	0.05
			2,344E-08	7.63	0.45	0.05
			2.818E-08	7,55	0.55	0.1
			3.548E-08	7.45	0.65	0.1
			4.677E-08	7.33	0.75	0.1
			6.310E-08	7.2	0.85	0.1
			9.120E-08	7.04	0.95	0.1
			1.175E-07	6.93	1	0.05
			1.549E-07	6.81	1.05	0.05
			2.188E-07	6.66	1.1	0.05
			3.631E-07	6.44	1.15	0.05
			7.586E-07	6.12	1.2	0.05
			3.162E-06	5.5	1.25	0.05
		0.000E+00	8.318E-05	4.08	1.3	0.05
1+ (1/Ka) x [SO42-]	2.904E-04	9.737E-04	3.020E-03	2.52	1.35	0.05
3.353512293	5.801E-04	1.946E-03	6.607E-03	2.18	1.4	0.05
	8.694E-04	2.915E-03	1.000E-02	2	1.45	0.05
	1.158E-03	3.883E-03	1.349E-02	1.87	1.5	0.05
	1.446E-03	4.850E-03	1.698E-02	1.77	1.55	0.05
	1.734E-03	5.814E-03	2.042E-02	1.69	1.6	0.05
	2.021E-03	6.776E-03	2.399E-02	1.62	1.65	0.05
	2.593E-03	8.696E-03	3.162E-02	1.5	1.75	0.1
	3.163E-03	1.061E-02	3.890E-02	1.41	1.85	0.1
	3.731E-03	1.251E-02	4.571E-02	1.34	1.95	0.1
	4.297E-03	1.441E-02	5.370E-02	1.27	2.05	0.1
	4.860E-03	1.630E-02	6.166E-02		2.15	0.1
	5.422E-03	1.818E-02	6.918E-02		2.25	0.1
	5.981E-03	2.006E-02	7.586E-02		2.35	0.1
	6.538E-03	2.193E-02	9 120E-02		2.45	0.1
	6.816E-03	2.286E-02	9.550E-02		2.5	0.05
	7,093E-03	2.379E-02	1,000E-01		2.55	0.05

Data location: Calculation steps: Wipp-MMMgO-14 p.12

- 1 H+ Observed in column D = 10^-pH observed in column C
- 2 Plot pH observed (column C) against total acid added (column B), Figure 1, and determine the equivalence volume, 1.30 ml
- 3 H+ added in column E =
- (Total added acid in column B equivalence volume 1.30 ml) x HCI concentration/(Brine volume 50ml + Total volume of added acid in column B) HCl concentration is given in notebook wipp-FePb-1, p6 and p21.

- 4 H+ free in column F = H+ added in column E/ value in cell G29 using equation (6) in section 3.3 of the report.
- 5 Here cell G29 =1+ (1/Ka)x [SO42-] with Ka =10^(-1.1490),
- where Ka is given in worksheet "constant", and the concentration of sulfate [SO42-] = 0.167 M in ERDA-6 according to SP20-4 appendix B.
- 6 Plot H+ observed in column D aginst H+ free (column F) and get slope of line, 12.873.
- 7 Correction factor A = log(slope in Figure 2)
- 8 Input slope and log (slope) in worksheet "sum" to get the average of A from three titrations

Brine: EDRA-6

Temperature:25.09°C

Start Time: 3:00pm End Time: 3:57pm

Titrant 1.00M HCI

Notebook and pg: Wipp-MMMgO-14 p.13

	3. 5.75. 2.4	ALC: NO THE RESERVE OF THE PERSON NAMED IN COLUMN TO PERSON NAMED IN C	10 A. T. C. C. X.	HCI added	
Amt added(ml)	HCl added (ml)	pH Observed	H+ Observed (M)	(M)	H+ free (M)
0	0.000	7.90	1.259E-08	0.000E+00	
0.05		7.86	1.380E-08	9.990E-04	
0.05		7.86	1.380E-08	1.996E-03	
0.05	0.150	7.83	1.479E-08	2.991E-03	
0.05		7.79	1.622E-08	3.984E-03	
0.05	0.250	7.76	1.738E-08	4.975E-03	
0.05	0.300	7,72	1.905E-08	5.964E-03	
0.05	0.350	7.68	2.089E-08	6.951E-03	
0.05	0.400	7.64	2.291E-08	7,937E-03	
0.05	0.450	7,60	2.512E-08	8.920E-03	
0.1	0.550	7.51	3.090E-08	1.088E-02	
0.1	0.650	7.41	3.890E-08	1.283E-02	
0.1	0.750	7.29	5.129E-08	1,478E-02	
0.1	0.850	7.15	7.079E-08	1.672E-02	
0.1	0.950	6,98	1.047E-07	1.865E-02	
0.05	1.000	6.87	1.349E-07	1.961E-02	
0.05	1.050	6.74	1.820E-07	2.057E-02	
0.05	1,100	6.56	2.754E-07	2.153E-02	
0.05	1.150	6.30	5.012E-07	2.248E-02	
0.05	1.200	5.82	1.514E-06	2.344E-02	
0.05	1.250	4.98	1.047E-05	0.000E+00	
0.05	1.300	2.77	1.698E-03	9.747E-04	2.906E-0
0.05	1.350	2.28	5.248E-03	1.947E-03	5.807E-0
0.05	1,400	2.05		2.918E-03	8.702E-0
0.05	1.450	1.90	1.259E-02	3.887E-03	1.159E-0
0.05	1.500	1.78		4.854E-03	1.448E-0
0.05	1.550	1.69	2.042E-02	5.820E-03	1.735E-0
0.05	1.600	1.62	2.399E-02	6.783E-03	2.023E-0
0.05	1.650	1.55	2.818E-02	7.744E-03	2.309E-0
0.05	1.700	1.49	3.236E-02	8.704E-03	2.596E-0
0.05	1.750	1.44	3.631E-02	9.662E-03	2,881E-0
0.05	1.800	1.39	4.074E-02	1.062E-02	3.166E-0
0.05	1.850	1.34	4.571E-02	1.157E-02	3,451E-0
0.05	1.900			1,252E-02	3.735E-0
0.05				1,347E-02	4,018E-0
0.1	2.050	1.22		1.537E-02	4.583E-0
0.1				1.726E-02	5.146E-0
0.1			7.762E-02	1,914E-02	5.707E-0
0.1				2.101E-02	6.266E-0
0.1				2,288E-02	6.822E-0

+ (1/Ka) x [SO42-] = 3.353512293

Data location: Calculation steps: Wipp-MMMgO-14 p.13

1 H+ Observed in column D = 10^-pH observed in column C
2 Plot pH observed (column C) against total acid added (column B), Figure 1, and determine the equivalence volume, 1.25 ml

3 H+ added in column E =

(Total added acid in column B - equivalence volume 1.25 ml) x HCl concentration/(Brine volume 50ml + Total volume of added acid in column B) HCl concentration is given in notebook wipp-FePb-1, p6 and p21.

4 H+ free in column F = H+ added in column E/ value in cell G27 using equation (6) in section 3.3 of the report.

5 Here cell G29 =1+ (1/Ka)x [SO42-] with Ka =10^(-1.1490),

where Ka is given in worksheet "constant", and the concentration of sulfate [SO42-] = 0.167 M in ERDA-6 according to SP20-4 appendix B.

6 Plot H+ observed in column D aginst H+ free (column F) and get slope of line, 13.029.

7 Correction factor A = log(slope in Figure 2)

8 Input slope and log (slope) in worksheet "sum" to get the average of A from three titrations

Figure 1. pH observed versus HCI added

Figure 2. H+ observed versus H+ free slope log(slope) R2

14.127 1.15005 0.9994

Brine: EDRA-6 Tartan 1.00M HCI

Temperature:25.09'C

Start Time: 3:00pm End Time: 3:57pm

Notebook and pg: Wipp-MMMgO-14 p.14

H+ free (M)	HCI added (M)	H+ Observed (M)	pH Observed	HCl added (ml)	amt added (mL)
	0.000E+00	1,175E-08	7.93	0.000	0
-	9.590E-04	1.259E-08	7.90	0.050	0.05
	1.916E-03	1.479E-08	7.83	0.100	0.05
	2.871E-03	1.622E-08	7.79	0.150	0.05
	3.825E-03	1.905E-08	7.72	0.200	0.05
	4.776E-03	2.138E-08	7.67	0.250	0.05
	5.726E-03	2.344E-08	7.63	0.300	0.05
	6.673E-03	2.570E-08	7.59	0.350	0.05
	7.619E-03	2.884E-08	7,54	0.400	0.05
	8.563E-03	3.162E-08	7.50	0,450	0.05
	9.505E-03	3.548E-08	7.45	0.500	0.05
-	1.138E-02	4.571E-08	7.34	0.600	0.1
	1.325E-02	6.166E-08	7.21	0.700	0.1
	1.512E-02	9.333E-08	7.03	0,800	0.1
	1.605E-02	1.096E-07	6.96	0.850	0.05
	1.697E-02	1.413E-07	6.85	0.900	0.05
	1.790E-02	1.905E-07	6.72	0.950	0.05
	1.882E-02	2.951E-07	6.53	1.000	0.05
	1.975E-02	5.623E-07	6.25	1.050	0.05
	2.067E-02	1.862E-06	5.73	1.100	0.05
	2.158E-02	1.698E-05	4.77	1.150	0.05
0.000E+0	0.000E+00	2.291E-03	2.64	1.200	0.05
2.909E-0	9.756E-04	6.026E-03	2.22	1.250	0.05
5.813E-0	1.949E-03	1.000E-02	2.00	1.300	0.05
8.711E-0	2.921E-03	1.380E-02	1.86	1.350	0.05
1.160E-0	3.891E-03	1.778E-02	1.75	1.400	0.05
1.449E-0	4.859E-03	2.188E-02	1.66	1.450	0.05
1,737E-0	5.825E-03	2.570E-02	1.59	1.500	0.05
2.025E-0	6.790E-03	3.020E-02	1.52	1.550	0.05
2.312E-0	7.752E-03	3.548E-02	1.45	1.600	0.05
2,598E-0	8.712E-03	3.802E-02	1.42	1.650	0.05
2.884E-0	9.671E-03	4.266E-02	1.37	1.700	0.05
3.454E-0	1.158E-02	5.129E-02	1.29	1.800	0.1
4.022E-0	1.349E-02	6.026E-02	1.22	1.900	0.1
4.588E-0	1.538E-02	6.761E-02	1.17	2.000	0.1
5.151E-0	1.727E-02	7.762E-02	1.11	2.100	0.1
5.432E-0	1,822E-02	8.128E-02	1.09	2.150	0.05
5.713E-0	1.916E-02	8.511E-02	1.07	2.200	0.05
5.992E-0	2.010E-02	8,913E-02	1.05	2.250	0.05
6.272E-0	2.103E-02	9.333E-02	1.03	2.300	0.05
6.551E-0	2.197E-02	9.772E-02	1.01	2.350	0.05
6.829E-0	2.290E-02	1.023E-01	0.99	2.400	0.05

+ (1/Ka) x [SO42-] = 3.353512293

Data location Wipp-MMMgO-14 p.14 Calculation steps:

1 H+ Observed in column D = 10^-pH observed in column C

2 Plot pH observed (column C) against total acid added (column B), Figure 1, and determine the equivalence volume, 1.20 ml

3 H+ added in column E =

(Total added acid in column B - equivalence volume 1.20 ml) x HCl concentration/(Brine volume 50ml + Total volume of added acid in column B) HCl concentration is given in notebook wipp-FePb-1, p6 and p21.

4 H+ free in column F = H+ added in column E/ value in cell G27 using equation (6) in section 3.3 of the report.

5 Here cell G29 =1+ (1/Ka)x [SO42-] with Ka =10^(-1.1490),

where Ka is given in worksheet "constant", and the concentration of sulfate [SO42-] = 0.167 M in ERDA-6 according to SP20-4 appendix B.

6 Plot H+ observed in column D aginst H+ free (column F) and get slope of line, 13.636

7 Correction factor A = log(slope in Figure 2)

8 Input slope and log (slope) in worksheet "sum" to get the average of A from three titrations

Figure 1. pH versus HCl added

Figure 2. H+ observed versus H+ free

slope log slope R2

14.785 1.169821 0.9997

In the above plots, time can be found in columns AM and BG in worksheet "Calculated molality" of this Excel file.

The saturation index can be found in columns BB, BC, BD, BW, BX, and BY in the worksheet "Calculated molality" of this Excel file

Page 1 of 1 Plots.xls Datasheet "Fig 28"

In the above plots, time can be found in columns CA and CU in worksheet "Calculated molality" of this Excel file.

The saturation index can be found in columns CP, CQ, CR, DM, DN, and DQ in the worksheet "Calculated molality" of this Excel file

Page 1 of 1
Plots xis
Datasheet "Fig29"

In Fig 30 (A), Mg++ concentration and pmH of GW3S, GW3M, GW20M, GW20L can be found in worksheet "calculated molality" of this Excel file Mg++ concentration and pmH predicated by EQ6 run for phase-5 equilibrated in GWB brine can be found in Excel file "GWB2(xiong)". Mg++ concentration and pmH predicated by EQ6 run for phase-3 or brucite equilibrated in GWB brine can be found in Excel file "GWB2(xiong)". The Excel file "GWB2(xiong)" is part of the memo: Xiong et al, 2009.

In Fig 30 (B), Mg++ concentration and pmH of MgCl3S, MgCl3M, MgCl20M, MgCl20L can be found in worksheet "calculated molality" of this Excel file Mg++ concentration and pmH predicated by EQ6 run for phase-5 equilibrated in GWB brine can be found in Excel file "GWB2(xiong)".

Mg++ concentration and pmH predicated by EQ6 run for phase-3 or brucite equilibrated in GWB brine can be found in the Excel file "GWB2(xiong)" respectively. The Excel file "GWB2(xiong)" is part of the memo: Xiong et al, 2009.

In Fig 30 (C), Mg++ concentration and pmH of ER3M, ER3L, ER20S, ER20M can be found in worksheet "calculated molality" of this Excel file Mg++ concentration and pmH predicated by EQ6 run for phase-5 equilibrated in ERDA-6 brine can be found in the Excel file "ERDA-62(xiong)". Mg++ concentration and pmH predicated by EQ6 run for phase-3 or brucite equilibrated in ERDA-6 brine can be found in the Excel file "ERDA-62(xiong)" respectively. The Excel file "ERDA-6 2(xiong)" is part of the memo: Xiong et al, 2009.

Datasheet "Fig30(A)"

♦ MgCl3s□ MgCl3M

MgCL20M

MgCl20L - phase 5 - phase 3

brucite

Page 1 of 1 Plots.xls Datasheet "Fig 30(B)"

Page 1 of 1 Plots.xls Datasheet "Fig30(C)

(C)

Architrary Time log N1 - purple Architrary Time log N1 - purple log N1 - p		4/22/2009 User: hdeng EQ3/6, Version 8.0				4/22/2009 User: hdeng EQ3/6, Version 8.0											
1.99999	Arbitrary Time	log Xi - gwb-								•					_		
4.52677 1.1629	(days)																
- 3.43908																	
-2.37852 1.1887																	
-237717 1,1597 0,0029154 0,0034038 2,37717 7,4928 0,72087 6,3218 1,1392 0,010555 2,647E-09 0,2759 1,18 0,8842 1,1144 8,577197 7 -2,30545 1,11579 0,0041937 -2,30545 7,4787 0,720849 6,3222 1,1333 0,010688 2,557E-09 0,2758 1,1787 0,8834 1,1135 8,592218 1,1787 0,2834 1,11579 0,0041637 -2,29738 7,5366 0,720873 6,3222 1,1333 0,010688 2,557E-09 0,2758 1,1787 0,8834 1,1135 8,6902218 1,1787 0,2834 1,11579 0,0041637 -2,29738 7,5265 0,720845 6,3222 1,1333 0,010688 2,557E-09 0,2758 1,1786 0,8833 1,1135 8,6902218 1,1787 0,2834 1,1137 0,2834 1,1135 8,000218 1,1787 0,2834 1,1135 8,000218 1,1787 0,2834 1,1135 8,000218 1,1787 0,2834 1,1135 8,000218 1,1787 0,2834 1,1135 8,000218 1,1787 0,2834 1,1135 8,000218 1,1787 0,2834 1,1135 8,000218 1,1787 0,2834 1,1135 8,000218 1,1787 0,2834 1,1135 8,000218 1,1787 0,2834 1,1135 1,1135 8,000218 1,1787 0,2834 1,1135 1,1135 8,000218 1,1787 0,2834 1,1135 1,1135 8,000218 1,1787 0,2834 1,1135 1,1135 8,000218 1,1135 1,1135 8,000218 1,1135 1,1135 8,000218 1,1135 1,1135 8,000218 1,1135 1,1135 1,1135 8,000218 1,1135 1,1135 8,000218 1,1135																	
7 -2.30545 1.158																	
50	_			0.0029154													
-2.29788 1.1579																	
200 -2.25495 1.1573	50																
371 -2.2121 1.1568 1.07TE-05 0.0042926 -2.2121 8.0505 0.720915 6.3224 1.1323 0.010713 6.86E-10 -0.2758 1.1781 0.8826 1.1131 9.163689 -2.21103 1.1567 1.1567 1.1567 1.1567 0.0042926 -2.21101 8.0506 0.720916 6.3224 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1131 9.163689 -2.21025 1.1567 2.125E-05 0.0042926 -2.21101 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1131 9.163689 -2.21025 1.1567 2.125E-05 0.0042926 -2.21025 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1131 9.163689 -2.20928 1.1567 3.452E-05 0.0042926 -2.20728 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1131 9.163695 -2.20452 1.1567 3.452E-05 0.0042926 -2.20452 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1131 9.163695 -2.20452 1.1567 3.452E-05 0.0042926 -2.20452 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1131 9.163695 -2.20452 1.1567 0.0042926 -2.20452 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1131 9.163695 -2.20452 1.1567 0.0042926 -2.20452 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1131 9.163695 -2.20452 0.0042926 -2.20452 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1131 9.163695 -2.20452 0.0042926 -2.20452 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1131 9.163695 -2.20452 0.004524 0.004524 0.004524 0.004524 0.005424	000																
-2.21163																	
-2.21101 1.1567 1.675E-05 0.004296 -2.21101 8.0506 0.720916 8.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1131 9.163689 -2.21025 1.1567 2.125E-05 0.0042926 -2.21025 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1131 9.163689 -2.20928 1.1567 2.682E-05 0.0042926 -2.20928 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1131 9.163695 -2.20789 1.1567 3.452E-05 0.0042926 -2.20789 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1131 9.163695 -2.20452 1.1567 5.399E-05 0.0042926 -2.20452 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1131 9.163695 -2.20452 1.1567 5.399E-05 0.0042926 -2.20452 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1131 9.163695 -2.20452 1.1567 5.399E-05 0.0042926 -2.20452 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1131 9.163695 -2.20452 1.1567 5.399E-05 0.0042926 -2.20452 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1131 9.163695 -2.20452 1.1567 5.399E-05 0.0042926 -1.53018 8.0553 0.721083 6.3199 1.1289 0.010716 6.847E-10 -0.2758 1.178 0.8825 1.1131 9.163695 -2.20452 1.1567 5.399E-05 0.0042926 -1.53018 8.0553 0.721083 6.3199 1.1289 0.010716 6.847E-10 -0.2758 1.1762 0.8809 1.1122 9.164481 -700	3/																
-2.21025 1.1567 2.125E-05 0.0042926 -2.21025 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1311 9.163695 -2.20928 1.1567 2.682E-05 0.0042926 -2.20928 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1313 9.163695 -2.20452 1.1567 3.452E-05 0.0042926 -2.20789 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1313 9.163695 -2.20452 1.1567 5.399E-05 0.0042926 -2.20789 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1313 9.163695 -2.20452 1.1567 5.399E-05 0.0042926 -2.20452 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1313 9.163695 -2.20452 1.1567 5.399E-05 0.0042926 -2.20452 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1313 9.163695 -2.20452 1.1567 5.399E-05 0.0042926 -2.20452 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1313 9.163695 -2.20452 1.1567 5.399E-05 0.0042926 -2.20452 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1313 9.163695 -2.20452 1.1567 5.399E-05 0.0042926 -2.20452 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1313 9.163695 -2.20452 1.1567 5.399E-05 0.0042926 -2.20452 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1313 9.163695 -2.20452 1.1567 5.399E-05 0.0042926 -2.20452 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1313 9.163695 -2.20452 1.1567 5.399E-05 0.0042926 -2.20452 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1313 9.163695 -2.20452 1.1567 5.399E-05 0.0042926 -2.20452 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1313 9.163695 -2.20452 1.1567 0.0042926 -2.20452 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1313 9.163695 -2.20452 1.1567 0.0042926 -2.20452 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.178 0.8825																	
-2.20928 1.1567 2.682E-05 0.0042926 -2.20928 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1131 9.163689 500 -2.20789 1.1567 3.452E-05 0.0042926 -2.20789 8.0506 0.720917 6.3223 1.1323 0.010714 6.86E-10 -0.2758 1.178 0.8825 1.1131 9.163689 -2.20452 1.1567 5.399E-05 0.0042926 -2.20452 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1131 9.163695 600 -1.53018 1.1334 0.0093577 0.0042926 -2.20452 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1131 9.163695 600 -1.53018 1.1334 0.0093577 0.0042926 -1.53018 8.0523 0.721083 6.3199 1.1289 0.010716 6.847E-10 -0.2758 1.1762 0.8809 1.1122 9.164481 700 4/22/2009 User: hdeng EC3/6, Version 8.0 log Xi - gwb- Periclase Brucite Moles Moles Moles Moles Moles Moles 11.60 1																	
500 -2.20789																	
-2.20452 1.1567 5.399E-05 0.0042926 -2.20452 8.0506 0.720917 6.3223 1.1323 0.010713 6.86E-10 -0.2758 1.178 0.8825 1.1131 9.163695 600 -1.53018 1.1334 0.0093577 0.0042926 -1.53018 8.0523 0.721083 6.3199 1.1289 0.010716 6.847E-10 -0.2758 1.1762 0.8809 1.1122 9.164481 0.00554 0.00554 0.0043001 0.06554 8.1454 0.729691 6.1952 0.95264 0.010898 6.186E-10 -0.2749 1.0819 0.7978 1.0632 9.208611 0.0042928 0.004292	500																
600 -1.53018 1.1334 0.0093577 0.0042926 -1.53018 8.0523 0.721083 6.3199 1.1289 0.010716 6.847E-10 -0.2758 1.1762 0.8809 1.1122 9.164481 0.006554 0.006554 0.0043001 0.06554 8.1454 0.729691 6.1952 0.95264 0.010898 6.186E-10 -0.2749 1.0819 0.7978 1.0632 9.208611 700 4/22/2009 User: hdeng EC3/6, Version 8.0 log Xi - gwb- Periclase Brucite Phase-5 log Xi - gwb- pH - gwb- a(w) - gwb- Moles 11.60 11.60 11.60 CI- Molality Molality Molality Molality Gamma Gamma Gamma Gamma pmH 7 - 99999 7.8779 - 99999 6.8265 0.720411 6.3203 1.145 0.0051204 1.143E-08 -0.2759 1.1617 0.8863 1.1155 7.9420298 24 -1.30103 7.8279 0.017559 -1.30103 8.0538 0.72123 6.3176 1.1258 0.01019 6.836E-10 -0.2759 1.1617 0.8863 1.1155 7.9420298 113 0.38003 5.5869 0.098486 0.87471 0.36003 8.2455 0.737546 6.0812 0.77601 0.011021 5.483E-10 -0.2741 0.9926 0.7187 1.0171 9.2625926														1.178	0.8825	1.1131	9.163695
0.06554 0 0.46276 0.0043001 0.06554 8.1454 0.729691 6.1952 0.95264 0.010898 6.186E-10 -0.2749 1.0819 0.7978 1.0632 9.208611 700 4/22/2009 User: hdeng EQ3/6, Version 8.0 log Xi - gwb- Periclase Brucite Phase-5 log Xi - gwb- pH - gwb- a(w) - gwb- Moles Moles Moles Moles 11.60 11.60 CI- Molality Molality Molality H- Molality Gamma Gamma Gamma Gamma pmH 7 - 99999 7.8779 - 99999 6.8265 0.720411 6.3203 1.145 0.0051204 1.143E-08 -0.2759 1.1617 0.8863 1.1155 7.9420298 24 -1.30103 7.8279 0.017559 -1.30103 8.0538 0.72123 6.3176 1.1258 0.010719 6.836E-10 -0.2758 1.1746 0.8795 1.1114 9.1651852 113 0.38003 5.5869 0.098486 0.87471 0.36003 8.2455 0.737546 6.0812 0.77601 0.011021 5.463E-10 -0.2741 0.9926 0.7187 1.0171 9.2625926	600											6.847E-10	-0.2758	1.1762	0.8809	1.1122	9.164481
4/22/2009 User: Indeng User: Indeng EQ3/6, Version 8.0 Version 8.0 log Xi - gwb- Periotase Moles Moles Moles Moles 11.60 11.40 1.40<			0.46276		0.0043001	0.06554	8.1454	0.729691	6.1952	0.95264	0.010898	6.186E-10	-0.2749	1.0819	0.7978	1.0632	9.208611
User: hideng EQ3/6, Version 8.0 log Xi - gwb- Periclase Brucite Phase-5 log Xi - gwb- Phase-5 log Xi - gwb- Phase-5 log Xi - gwb- Phase-5 log Xi - gwb- Phase-5 log Xi - gwb- Phase-5 log Xi - gwb- Phase-5 log Xi - gwb- Phase-5 log Xi - gwb- Phase-5 log Xi - gwb- Phase-5 log Xi - gwb- Phase-6 log Xi - gwb- Ph	700)															
11.60 Moles Moles Moles 11.60 11.60 11.60 CI- Molality Molality H+ Molality Gamma Gamma Gamma pmH 7 -99999 7.8779 -99999 6.8265 0.720411 6.3203 1.145 0.0051204 1.143E-08 -0.2759 1.1617 0.8863 1.1155 7.9420298 24 -1.30103 7.8279 0.017559 -1.30103 8.0538 0.72123 6.3176 1.1258 0.010719 6.836E-10 -0.2758 1.1746 0.8795 1.1114 9.1651852 113 0.36003 5.5869 0.098486 0.87471 0.36003 8.2455 0.737546 6.0812 0.77601 0.011021 5.463E-10 -0.2741 0.9926 0.7187 1.0171 9.2625926		User: hdeng EQ3/6, Version 8.0			User: Indeng EQ3/6, Version 8.0												
7 -99999 7.8779 -99999 6.8265 0.720411 6.3203 1.145 0.0051204 1.143E-08 -0.2759 1.1617 0.8863 1.1155 7.9420298 24 -1.30103 7.8279 0.017559 -1.30103 8.0538 0.72123 6.3176 1.1258 0.010719 6.836E-10 -0.2758 1.1746 0.8795 1.1114 9.1651852 113 0.38003 5.5869 0.098486 0.87471 0.36003 8.2455 0.737546 6.0812 0.77601 0.011021 5.483E-10 -0.2741 0.9926 0.7187 1.0171 9.2625926									-								
24 -1,30103 7.8279 0.017559 -1.30103 8.0538 0.72123 6.3176 1.1258 0.010719 6.836E-10 -0.2758 1.1746 0.8795 1.1114 9.1651852 113 0.36003 5.5869 0.098486 0.87471 0.36003 8.2455 0.737546 6.0812 0.77601 0.011021 5.463E-10 -0.2741 0.9926 0.7187 1.0171 9.2625926	_			Moles							•						
113 0.38003 5.5869 0.098486 0.87471 0.36003 8.2455 0.737546 6.0812 0.77601 0.011021 5.463E-10 -0.2741 0.9926 0.7187 1.0171 9.2625926				0.047550													
000 0,08330 2,5390 2,710 1,0040 0,09300 0,7412 0,771700 0,7180 0,008700 0,070⊑-10 •0,741 1,0430 0,7042 1,0049 8,2943720																	
0.76132 2.106 3.052 1.0856 0.76132 8.2408 0.727463 6.2784 0.72098 0.0095916 5.07E-10 -0.2748 1.0459 0.7636 1.0543 9.2950177	500																
800 0.89641 0 5.0251 1.1388 0.89641 8.2396 0.726744 6.2835 0.72556 0.0093206 5.054E-10 -0.2749 1.0463 0.7619 1.0568 9.2963991	ຄຸດເ																

Explanation

Except for the data in column A which are arbitrary time, all data from row 3 to row 14 are extracted from EQ6 output file "gwb-77.60" CI- log gamma, H+ log gamma, Mg++ log gamma and aw (water activity) in row 12 are used in worsheet "calculated molality" of this Excel file As MgO is titrated into the brine, the CI- log gamma, H+ log gamma, Mg++ log gamma and aw change slightly. In our calculation, we chose the values for the activity coefficients from the EQ6 output file when phase-5 first appears, row 12.

Except for the data in column A which are arbitrary time, all data from row 17 to row 32 are extracted from EQ6 output file "gwb-11.60" CI- log gamma, H+ log gamma, Mg++ log gamma and aw (water activity) in row 26 are used in worksheet "calculated molality" of this Excel file In our calculation, we chose the values for the activity coefficients from the EQ6 output file when brucite first appears, row 26.

In Fig A, Mg++ concentration of GW3S, GW3M, GW20M, GW20L can be found in worksheet "calculated molality" of this Excell file

Mg++ concentration predicated by EQ6 run for MgO titrated into 77ml and 11 ml of GWB brine can be found in columns K and J above, from EQ6 output files gwb-77.60 and gwb-11.60 respectively

In Fig B, CI- concentration of GW3S, GW3M, GW20M, GW20L can be found in worksheet "calculated molality" of this Excel file CI- concentration predicated by EQ6 run for MgO titrated into 77ml and 11 ml of GWB brine can be found in columns J and I above, from EQ6 output files gwb-77.60 and gwb-11.60 respectively.

In Fig C, pmH of GW3S, GW3M, GW20M, GW20L can be found in worksheet "calculated molality" of this Excel file pmH predicated by EQ6 run for MgO titrated into 77ml and 11 ml of GWB brine can be found in columns R and Q above, from EQ6 output files gwb-77.60 and gwb-11.60 respectively

	3/18/2009 User: hdeng EQ3/6, Version 8.0			3/18/2009 User: hdeng EQ3/6, Version 8.0 log Xi -		a(w) -								
Arbitrary	log Xi -	Periclase	Phase-5	sgwbb-	pH - sgwbb-	sgwbb-		Mg++		CI- Log	Mg++ Log			
Time (days)	sgwbb-77.60			77.60	77.6o		CI- Molality		H+ Molality		Gamma	Gamma	pmH	
	-99999			-99999	6.5845				2.0953E-08	-0.2733	1.1814		7.67875379	
10				-2.69484	6.7385				1.4703E-08	-0.2733	1.1812		7.83259404	
15				-2.22369	8.0444				7.2791E-10	-0.2733	1.1803		9.13792231	
24				-2.22366	8.0444				7.279E-10	-0.2733	1.1803		9.13792828	
80			1.6713E-07	-2.22365	8.0444		6.2691	1.1015		-0.2733	1.1803		9.13792828	
100			2.3442E-07	-2.22364	8.0444		6.2691	1.1015	7.279E-10	-0.2733	1.1803		9.13792828	
200			3.319E-07	-2.22362	8.0444		6.2691	1.1015		-0.2733	1.1803		9.13792828	
	-2.22359		5.3087E-07	-2.22359	8.0444		6.2691	1.1015		-0.2733	1.1803		9.13792828	
	-2.22347		1.1588E-06	-2.22347	8.0444		6.2691	1.1015		-0.2733	1.1803		9.13792828	
	-2.22315			-2.22315	8.0444		6.2691	1.1015		-0.2733	1.1803		9.13792828	
800			0.00024405	-2.18146	8.0444				7.2786E-10	-0.2733	1.1802		9.13795215	
	0.06277	0	0.45987	0.06277	8.1388	0.741559	6.1398	0.92129	6.577E-10	-0.2721	1.0867	1.0432	9.18197216	
	3/18/2009 User: hdeng EQ3/6, Version 8.0				3/18/2009 User: hdeng EQ3/6, Version 8.0		-4-4							
	Inn Vi	Darielesa	Brucite	Phase-5	las Vi	pH - sgwbb-	a(w) -		Mg++		CI- Log	Mg++ Log	H+ Log	
	log Xi -				log Xi -			CI- Molality		H+ Molality	_	Gamma	_	pmH
	sgwbb-11.6o		Moles	MOIGS	sgwbb-11.6o		11.60							
	-99999					C E04E								
		7.8279			-99999		0.731964	6.2683	1.1054	2.0953E-08	-0.2733	1.1814	1.0942	7.678754
	-2.69484	7.8259			-2.69484	6.7385	0.731964 0.732064	6.2683 6.2685	1.1054 1.1042	2.0953E-08 1.4703E-08	-0.2733 -0.2733	1.1814 1.1812	1.0942 1.0941	7.678754 7.832594
24	-2.22369	7.8259 7.8219		4 46E 07	-2.69484 -2.22369	6.7385 8.0444	0.731964 0.732064 0.732274	6.2683 6.2685 6.2691	1.1054 1.1042 1.1015	2.0953E-08 1.4703E-08 7.2791E-10	-0.2733 -0.2733 -0.2733	1.1814 1.1812 1.1803	1.0942 1.0941 1.0935	7.678754 7.832594 9.137922
24	-2.22369 -2.22366	7.8259 7.8219 7.8219		1.16E-07	-2.69484 -2.22369 -2.22366	6.7385 8.0444 8.0444	0.731964 0.732064 0.732274 0.732274	6.2683 6.2685 6.2691 6.2691	1.1054 1.1042 1.1015 1.1015	2.0953E-08 1.4703E-08 7.2791E-10 7.279E-10	-0.2733 -0.2733 -0.2733 -0.2733	1.1814 1.1812 1.1803 1.1803	1.0942 1.0941 1.0935 1.0935	7.678754 7.832594 9.137922 9.137928
24	-2.22369 -2.22366 -2.22365	7.8259 7.8219 7.8219 7.8219		1.6713E-07	-2.69484 -2.22369 -2.22366 -2.22365	6.7385 8.0444 8.0444 8.0444	0.731964 0.732064 0.732274 0.732274 0.732274	6.2683 6.2685 6.2691 6.2691 6.2691	1.1054 1.1042 1.1015 1.1015 1.1015	2.0953E-08 1.4703E-08 7.2791E-10 7.279E-10 7.279E-10	-0.2733 -0.2733 -0.2733 -0.2733 -0.2733	1.1814 1.1812 1.1803 1.1803 1.1803	1.0942 1.0941 1.0935 1.0935 1.0935	7.678754 7.832594 9.137922 9.137928 9.137928
24	-2.22369 -2.22366 -2.22365 -2.22364	7.8259 7.8219 7.8219 7.8219 7.8219		1.6713E-07 2.3442E-07	-2.69484 -2.22369 -2.22366 -2.22365 -2.22364	6.7385 8.0444 8.0444 8.0444	0.731964 0.732064 0.732274 0.732274 0.732274 0.732274	6.2683 6.2685 6.2691 6.2691 6.2691 6.2691	1.1054 1.1042 1.1015 1.1015 1.1015 1.1015	2.0953E-08 1.4703E-08 7.2791E-10 7.279E-10 7.279E-10 7.279E-10	-0.2733 -0.2733 -0.2733 -0.2733 -0.2733	1.1814 1.1812 1.1803 1.1803 1.1803 1.1803	1.0942 1.0941 1.0935 1.0935 1.0935	7.678754 7.832594 9.137922 9.137928 9.137928 9.137928
24	-2.22369 -2.22366 -2.22364 -2.22362	7.8259 7.8219 7.8219 7.8219 7.8219 7.8219		1.6713E-07 2.3442E-07 3.319E-07	-2.69484 -2.22369 -2.22366 -2.22365 -2.22364 -2.22362	6.7385 8.0444 8.0444 8.0444 8.0444	0.731964 0.732064 0.732274 0.732274 0.732274 0.732274 0.732274	6.2683 6.2685 6.2691 6.2691 6.2691 6.2691 6.2691	1.1054 1.1042 1.1015 1.1015 1.1015 1.1015 1.1015	2.0953E-08 1.4703E-08 7.2791E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10	-0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733	1.1814 1.1812 1.1803 1.1803 1.1803 1.1803 1.1803	1.0942 1.0941 1.0935 1.0935 1.0935 1.0935 1.0935	7.678754 7.832594 9.137922 9.137928 9.137928 9.137928 9.137928
24	-2.22369 -2.22366 -2.22365 -2.22364 -2.22362 -2.22359	7.8259 7.8219 7.8219 7.8219 7.8219 7.8219 7.8219		1.6713E-07 2.3442E-07 3.319E-07 5.3087E-07	-2.69484 -2.22369 -2.22366 -2.22365 -2.22364 -2.22362 -2.22359	6.7385 8.0444 8.0444 8.0444 8.0444 8.0444	0.731964 0.732064 0.732274 0.732274 0.732274 0.732274 0.732274 0.732274	6.2683 6.2685 6.2691 6.2691 6.2691 6.2691 6.2691 6.2691	1.1054 1.1042 1.1015 1.1015 1.1015 1.1015 1.1015 1.1015	2.0953E-08 1.4703E-08 7.2791E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10	-0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733	1.1814 1.1812 1.1803 1.1803 1.1803 1.1803 1.1803 1.1803	1.0942 1.0941 1.0935 1.0935 1.0935 1.0935 1.0935 1.0935	7.678754 7.832594 9.137922 9.137928 9.137928 9.137928 9.137928 9.137928
24	-2.22369 -2.22366 -2.22365 -2.22364 -2.22362 -2.22359 -2.22347	7.8259 7.8219 7.8219 7.8219 7.8219 7.8219 7.8219 7.8219		1.6713E-07 2.3442E-07 3.319E-07 5.3087E-07 1.1588E-06	-2.69484 -2.22369 -2.22366 -2.22365 -2.22364 -2.22362 -2.22359 -2.22347	6.7385 8.0444 8.0444 8.0444 8.0444 8.0444 8.0444	0.731964 0.732064 0.732274 0.732274 0.732274 0.732274 0.732274 0.732274 0.732274	6.2683 6.2685 6.2691 6.2691 6.2691 6.2691 6.2691 6.2691	1.1054 1.1042 1.1015 1.1015 1.1015 1.1015 1.1015 1.1015 1.1015	2.0953E-08 1.4703E-08 7.2791E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10	-0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733	1.1814 1.1812 1.1803 1.1803 1.1803 1.1803 1.1803 1.1803 1.1803	1.0942 1.0941 1.0935 1.0935 1.0935 1.0935 1.0935 1.0935 1.0935	7.678754 7.832594 9.137922 9.137928 9.137928 9.137928 9.137928 9.137928 9.137928 9.137928
24	-2.22369 -2.22366 -2.22365 -2.22364 -2.22362 -2.22359 -2.22347 -2.22315	7.8259 7.8219 7.8219 7.8219 7.8219 7.8219 7.8219 7.8219 7.8219		1.6713E-07 2.3442E-07 3.319E-07 5.3087E-07 1.1588E-06 2.927E-06	-2.69484 -2.22369 -2.22365 -2.22365 -2.22362 -2.22362 -2.22359 -2.22347 -2.22315	6.7385 8.0444 8.0444 8.0444 8.0444 8.0444 8.0444 8.0444	0.731964 0.732064 0.732274 0.732274 0.732274 0.732274 0.732274 0.732274 0.732274	6.2683 6.2685 6.2691 6.2691 6.2691 6.2691 6.2691 6.2691 6.2691	1.1054 1.1042 1.1015 1.1015 1.1015 1.1015 1.1015 1.1015 1.1015	2.0953E-08 1.4703E-08 7.2791E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10	-0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733	1.1814 1.1812 1.1803 1.1803 1.1803 1.1803 1.1803 1.1803 1.1803 1.1803	1.0942 1.0941 1.0935 1.0935 1.0935 1.0935 1.0935 1.0935 1.0935	7.678754 7.832594 9.137922 9.137928 9.137928 9.137928 9.137928 9.137928 9.137928 9.137928
	-2.22369 -2.22365 -2.22364 -2.22364 -2.22359 -2.22357 -2.22315 -2.18146	7.8259 7.8219 7.8219 7.8219 7.8219 7.8219 7.8219 7.8219 7.8219 7.8213		1.6713E-07 2.3442E-07 3.319E-07 5.3087E-07 1.1588E-06 2.927E-06 0.00024405	-2.69484 -2.22369 -2.22365 -2.22365 -2.22364 -2.22362 -2.22359 -2.22347 -2.22315 -2.18146	6.7385 8.0444 8.0444 8.0444 8.0444 8.0444 8.0444 8.0444 8.0444	0.731964 0.732064 0.732274 0.732274 0.732274 0.732274 0.732274 0.732274 0.732274 0.732274 0.732274	6.2683 6.2685 6.2691 6.2691 6.2691 6.2691 6.2691 6.2691 6.2691 6.2691	1.1054 1.1042 1.1015 1.1015 1.1015 1.1015 1.1015 1.1015 1.1015 1.1015	2.0953E-08 1.4703E-08 7.2791E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10 7.278E-10 7.278E-10	-0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733	1.1814 1.1812 1.1803 1.1803 1.1803 1.1803 1.1803 1.1803 1.1803 1.1803	1.0942 1.0941 1.0935 1.0935 1.0935 1.0935 1.0935 1.0935 1.0935 1.0935	7.678754 7.832594 9.137922 9.137928 9.137928 9.137928 9.137928 9.137928 9.137928 9.137928 9.137928 9.137928
41	-2.22369 -2.22365 -2.22364 -2.22362 -2.22359 -2.22347 -2.22315 -2.18146 0.38501	7.8259 7.8219 7.8219 7.8219 7.8219 7.8219 7.8219 7.8219 7.8219 7.8213 5.4012	0.014827	1.6713E-07 2.3442E-07 3.319E-07 5.3087E-07 1.1588E-06 2.927E-06 0.00024405 0.96249	-2.69484 -2.22369 -2.22366 -2.22365 -2.22364 -2.22359 -2.22347 -2.22315 -2.18146 0.38501	6.7385 8.0444 8.0444 8.0444 8.0444 8.0444 8.0444 8.0444 8.0444 8.2682	0.731964 0.732264 0.732274 0.732274 0.732274 0.732274 0.732274 0.732274 0.732274 0.732279 0.752603	6.2683 6.2685 6.2691 6.2691 6.2691 6.2691 6.2691 6.2691 6.2691 5.2691 5.9823	1.1054 1.1042 1.1015 1.1015 1.1015 1.1015 1.1015 1.1015 1.1015 1.1014 0.6995	2.0953E-08 1.4703E-08 7.2791E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10 5.6143E-10	-0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733	1.1814 1.1803 1.1803 1.1803 1.1803 1.1803 1.1803 1.1803 1.1803 1.1802 0.9747	1.0942 1.0941 1.0935 1.0935 1.0935 1.0935 1.0935 1.0935 1.0935 1.0935	7.678754 7.832594 9.137922 9.137928 9.137928 9.137928 9.137928 9.137928 9.137928 9.137928 9.137929 9.137929
41 200	-2.22369 -2.22366 -2.22365 -2.22364 -2.22362 -2.22347 -2.22315 -2.18146 0.38501 0.38511	7.8259 7.8219 7.8219 7.8219 7.8219 7.8219 7.8219 7.8219 7.8213 5.4012 5.4007	0.014827 0.015256	1.6713E-07 2.3442E-07 3.319E-07 5.3087E-07 1.1588E-06 2.927E-06 0.00024405 0.96249 0.96253	-2.69484 -2.22369 -2.22366 -2.22365 -2.22364 -2.22369 -2.22347 -2.22315 -2.18146 0.38501 0.38511	6.7385 8.0444 8.0444 8.0444 8.0444 8.0444 8.0444 8.0444 8.0444 8.2682 8.2682	0.731964 0.732064 0.732274 0.732274 0.732274 0.732274 0.732274 0.732274 0.732274 0.732274 0.732279 0.752603 0.752603	6.2683 6.2685 6.2691 6.2691 6.2691 6.2691 6.2691 6.2691 6.2691 5.9823 5.9824	1.1054 1.1042 1.1015 1.1015 1.1015 1.1015 1.1015 1.1015 1.1015 1.1014 0.6995 0.69949	2.0953E-08 1.4703E-08 7.2791E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10 5.6143E-10 5.6142E-10	-0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2736 -0.2736	1.1814 1.1812 1.1803 1.1803 1.1803 1.1803 1.1803 1.1803 1.1803 1.1802 0.9747	1.0942 1.0941 1.0935 1.0935 1.0935 1.0935 1.0935 1.0935 1.0935 0.9825	7.678754 7.832594 9.137922 9.137928 9.137928 9.137928 9.137928 9.137928 9.137928 9.137929 9.137929 9.137920 9.250704
41 200 300	-2.22369 -2.22366 -2.22365 -2.22364 -2.22362 -2.22359 -2.22347 -2.22315 -2.18146 0.38501 0.38511	7.8259 7.8219 7.8219 7.8219 7.8219 7.8219 7.8219 7.8219 7.8213 5.4012 5.4007 2.5007	0.014827 0.015256 2.3879	1.6713E-07 2.3442E-07 3.319E-07 5.3087E-07 1.1588E-06 2.927E-06 0.00024405 0.96249 0.96253 1.1735	-2.69484 -2.22369 -2.22365 -2.22365 -2.22364 -2.22369 -2.22347 -2.22315 -2.18146 0.38501 0.38511	6.7385 8.0444 8.0444 8.0444 8.0444 8.0444 8.0444 8.0444 8.0444 8.2682 8.2682 8.2682	0.731964 0.732064 0.732274 0.732274 0.732274 0.732274 0.732274 0.732274 0.732274 0.732274 0.732270 0.752603 0.752601 0.741668	6.2683 6.2685 6.2691 6.2691 6.2691 6.2691 6.2691 6.2691 6.2691 5.9823 5.9824 6.2149	1.1054 1.1042 1.1015 1.1015 1.1015 1.1015 1.1015 1.1015 1.1015 1.1014 0.6995 0.69949	2.0953E-08 1.4703E-08 7.2791E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10 5.6143E-10 5.6143E-10 5.6142E-10 5.1466E-10	-0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2736 -0.2736 -0.2706	1.1814 1.1812 1.1803 1.1803 1.1803 1.1803 1.1803 1.1803 1.1803 1.1803 0.9747 0.9748	1.0942 1.0941 1.0935 1.0935 1.0935 1.0935 1.0935 1.0935 1.0935 1.0935 0.9825 0.9825	7.678754 7.832594 9.137922 9.137928 9.137928 9.137928 9.137928 9.137928 9.137928 9.137928 9.137929 9.137929 9.250704 9.250704 9.250712
41 200	-2.22369 -2.22366 -2.22365 -2.22364 -2.22362 -2.22359 -2.22347 -2.22315 -2.18146 0.38501 0.38511 0.7265	7.8259 7.8219 7.8219 7.8219 7.8219 7.8219 7.8219 7.8219 7.8213 5.4012 5.4007 2.5007	0.014827 0.015256 2.3879 2.39	1.6713E-07 2.3442E-07 3.319E-07 5.3087E-07 1.1588E-06 2.927E-06 0.00024405 0.96249 0.96253 1.1735 1.1735	-2.69484 -2.22369 -2.22366 -2.22365 -2.22364 -2.22369 -2.22347 -2.22315 -2.18146 0.38501 0.38511	6.7385 8.0444 8.0444 8.0444 8.0444 8.0444 8.0444 8.0444 8.2682 8.265 8.265	0.731964 0.732064 0.732274 0.732274 0.732274 0.732274 0.732274 0.732274 0.732274 0.732274 0.732270 0.752603 0.752601 0.741668	6.2683 6.2685 6.2691 6.2691 6.2691 6.2691 6.2691 6.2691 6.2691 5.9823 5.9824	1.1054 1.1042 1.1015 1.1015 1.1015 1.1015 1.1015 1.1015 1.1015 1.1015 0.69949 0.62834	2.0953E-08 1.4703E-08 7.2791E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10 7.279E-10 5.6143E-10 5.6142E-10	-0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2733 -0.2736 -0.2736	1.1814 1.1812 1.1803 1.1803 1.1803 1.1803 1.1803 1.1803 1.1803 1.1802 0.9747	1.0942 1.0941 1.0935 1.0935 1.0935 1.0935 1.0935 1.0935 1.0935 1.0935 1.0935 1.0935 1.0935	7.678754 7.832594 9.137922 9.137928 9.137928 9.137928 9.137928 9.137928 9.137928 9.137929 9.137929 9.137920 9.250704

Explanation

Except for the data in column A which are arbitrary time, all data from row 3 to row 21 are extracted from EQ6 output file "sgwb-77.6o" CI- log gamma, H+ log gamma, Mg++ log gamma and aw (water activity) in row 6 are used in data sheet "calculated molality" of this Excel file As MgO is titrated into the brine, the CI- log gamma, H+ log gamma, Mg++ log gamma and aw (water activity) change slightly. In our calculation, we chose the values for the activity coefficients when phase-5 first appears, row 6

Except for the data in column A which are arbitrary time, all data from row 17 to row 32 are extracted from EQ6 output file "sgwb-11.60" CI- log gamma, H+ log gamma, Mg++ log gamma and aw in row 28 are used in data sheet "calculated molality" of this Excel file In our calculation, we chose the values for the activity coefficients from the EQ6 output file when brucite first appears, i.e. row 28

In Fig A, the Mg++ concentration of MgCl3S, MgCl3M, MgCl20M, MgCl20L can be found in worksheet "calculated molality" of this Excel file
Mg++ concentration predicated by EQ6 run for MgO titrated into 77ml and 11 ml of simplified GWB brine can be found in column I above, from EQ6 output files sgwb-77.60 and sgwb-11.60 respectively.

In Fig B, CI- concentration of MgCl3S, MgCl3M, MgCl20M, MgCl20L can be found in data sheet "calculated molality" of this Excel file CI concentration predicated by EQ6 run for MgO titrated into 77ml and 11 ml of simplified GWB brine can be found in columns H and I above, from from EQ6 output files sgwb-77.6o and sgwb-11.6o respectively.

In Fig C, pmH of MgCl3S, MgCl3M, MgCl20M, MgCl20L can be found in data sheet "calculated molality" of this Excel file pmH predicated by EQ6 run for MgO titrated into 77ml and 11 ml of simplified GWB brine can be found in columns N and O above, from from EQ6 output files sgwb-77.60 and sgwb-11.60 respectively.

		4/29/2009 User: hdeng EQ3/6, Version 8.0			PM 4/29/2009 User: hdeng log Xi -	pH -	a(w) -									
Arbiti	rary Time	log Xi - erdca-	Brucite	Periclase	erdca-	erdca-	erdca-	CI-	Ca++			CI- Log	Ca++ Log	Mg++ Log	H+ Log	
(days	•	12.6o	Moles	Moles	12.60	12.6o	12.60	Molality	Molality	Mg++ Molality	H+ Molality	Gamma	Gamma	Gamma	Gamma	pmH
17-	24	-99999	0.0213	7.8437	-99999	12.2096	0.788766	5.2037	0.018241	2.2171E-08	1.0915E-13	-0.2664	0.3294	0.5502	0.7524	12.96198
	200	-0.39794	0.4213	7.4437	-0.39794	12.2076	0.78694	5.2416	0.017991	2.18E-08	1.0757E-13	-0.2666	0.3413	0.5634	0.7607	
	500	-0.09691	0.8213	7.0437	-0.09691	12.2057	0.785084	5.28	0.01774	2.1428E-08	1.06E-13		0.3533			
		0.07918	1.2213	6.6437	0.07918	12.2037	0.783197	5.3189	0.017488	2.1056E-08	1.0442E-13	-0.267	0.3656	0.5905		
	800	0.20412	1.6213	6.2437	0.20412	12.2017		5.3584			1.0283E-13	-0.2672	0.3781	0.6044	0.7862	
		0.30103	2.0213	5.8437	0.30103	12.1997	0.779324	5.3986	0.016982	2.0311E-08	1.0125E-13	-0.2674	0.3908	0.6185		
		0.38021	2.4213	5.4437	0.38021		0.777635		0.016763		9.989E-14	-0.2676	0.4017	0.6307	0.8026	
		0.44716	2.8213	5.0437	0.44716	12.1968	0.775624	5.4744	0.016434		9.808E-14	-0.2678	0.4148	0.6452		
		0.50515	3.2213	4.6437	0.50515	12.1958		5.5183			9.6271E-14	-0.268	0.428	0.66	0.8207	13.0165
		0.5563	3.6213	4.2437	0.5563	12.1947		5.5588			9.4463E-14	-0.2682	0.4415			
		0.60206	4.0213	3.8437	0.60206	12.1936	0.769375	5.6019			9.2656E-14	-0.2684	0.4553	0.6903	0.8396	
		0.64345	4.4213	3.4437	0.64345		0.767216				9.0851E-14	-0.2686	0.4692	0.7058	0.8492	
		0.68124	4.8213	3.0437	0.68124		0.765019	5.6903			8.9048E-14	-0.2688	0.4834	0.7217	0.859	
		0.716	5.2213	2.6437	0.716	12.1903			0.014462		8.7247E-14	-0.269	0.4979	0.7378	0.869	
		0.74819	5.6213	2.2437	0.74819	12.1892		5.7814			8.5449E-14	-0.2693	0.5126	0.7542		
		0.77815	6.0213	1.8437	0.77815	12.1881	0.758183	5.8281	0.013809		8.3654E-14	-0.2695	0.5276	0.7709	0.8894	
		0.80618	6.4213	1.4437	0.80618	12.187	0.75582	5.6756			8.1864E-14	-0.2697	0.5429	0.7879	0.8999	
		0.83251	6.8213	1.0437	0.83251	12.1859	0.753412	5.9238			8.0077E-14	-0.2699	0.5584	0.8052	0.9106	
		0.85733	7.2213	0.6437	0.85733	12.1848	0.750958	5.9729			7.8296E-14	-0.2701	0.5743	0.8228	0.9215	
		0.86852	7.4092	0.45581	0.86852	12.1844	0.749911	5.9937		1.4452E-08	7.7534E-14	-0.2702	0.581	0.8303	0.9261	
		0.88081	7.6213	0.2437		12.1853	0.749894	5.9933			7.7381E-14	-0.2703	0.5807	0.8302	0.9261	
	1000	0.69452	7.865	0		12.1863	0.749875	5.9928	0.012605	1.4335E-08	7.7205E-14	-0.2703	0.5805	0.8301	0.9261	13.11235
		4/22/2009			PM											
		User, hdeng			4/22/2009											
		EQ3/6,			User:											
		Version 6.0			hdeng											
	_				log Xi	pH -	a(w) -					01.1	0-111	Marria		
	•	log Xi - erdca-		Brucite	eroca-	erdca-	erdca-	CI-	Ca++			CI- Log		Mg++ Log		
(days		78.60	Moles	Moles	78.60	78.6o	78.60		Molality	Mg++ Molality						pmH 7.511873
	24	-99999	1.1579		-99999		0.788843				3.077E-08	-0.2666	0.3472			
	113	-2.64152	1.1556	1.196E-07		9.1921	0.788996	5.1986			1.1253E-10	-0.2666	0.3447	0.5629		9.948732
	300	-0.39794	0.7579	0.39772		9.185		5.2361	0.003609		1.1224E-10	-0.2668	0.3565			9.949852
	500	-0.09691	0.3579	0.79771	-0.09691	9.1776		5.2744			1.1194E-10	-0.267	0.3686	0.5898		9.951015
	1000	0.06367	0	1.1556	0.06367	9.171	0.783567	5.3091	0.003655	0.023808	1.1166E-10	-0.2672	0.3796	0.6021	0.7611	9.952102

Explanation:

Except for the data in column A which are arbitrary time, all data from row 3 to row 21 are extracted from the EQ6 output file "erdca-12.60" CI- log gamma, H+ log gamma, Mg++ log gamma and aw (water activity) in row 3 are used in worksheet "calculated molality" of this Excal file As MgO is titrated into the brine, the CI- log gamma, H+ log gamma Mg++ log gamma and aw change slightly. In our calculation, we chose the values for the activity coefficients from the EQ6 output file when brucite first appears, row 3

Except for the data in column A which are arbitrary time, all data from row 17 to row 32 are extracted from EQ6 output file "erdca-78.60" CI- log gamma, H+ log gamma, Mg++ log gamma and aw (water activity) in row 27 are used in worksheet "calculated molality" of this Excel file In our calculation, we chose the values for the activity coefficients from the EQ6 output file when brucite first appears, row 27

In Fig A, the Mg++ concentration of ER3M, ER3L, ER20S, ER20M can be found in worksheet "calculated molality" of this Excel file
Mg++ concentration predicated by EQ6 run for MgO titrated into 77ml and 11 ml of ERDA-6 brine can be found in column J above, from files erdca-12.60 and erdca-78.60 respectively

In Fig B, CI- concentration of ER3M, ER3L, ER20S, ER20M can be found in data sheet "celculated molality" of this Excel file CI concentration predicated by EQ6 run for MgO titrated into 77ml and 11 ml of ERDA-6 brine can be found in column H above, from files erdca-12.60 and erdca-78.60 respectively

In Fig C, pmH of ER3M, ER3L, ER20S, ER20M can be found in data sheet "calculated molality" of this Excel file pmH predicated by EQ8 run for MgO titrated into 77ml and 11 ml of ERDA-6 brine can be found in column P, from files erdca-12.6o and erdca-78.6o respectively

In Fig D, Ca++ concentration of ER3M, ER3L, ER20S, ER20M can be found in data sheet "calculated molality" of this Excel file
Ca concentration predicated by EQ6 run for MgQ titrated into 77ml and 11 ml of ERDA-6 brine can be found in column I, from files erdca-12.80 and erdca-78.60 respectively

		MW	
77ml	of 1M MgCl2 + 3.6M NaCl	Mg (g/mol)	24.305
3.1 g	of MgO	Na (g/mol)	22.989768
MW MgCl2 (g/mole)	95.2104	Cl (g/mol)	35.4527
MW NaCl (g/mole)	58.44247	O (g/mol)	15.9994
MW MgO (g/mole)	38.98917		

Density (simplified GWB) (g/ml) 1.1992 (WIPP-MgO-CBD-26, p82)

305.6033 68.8069

Water in 77ml of MgO mole/kg brine (q) MgO water

of water molality to molarity
1.1555 1.119073048

Input:

salt/L of brine (g/L)

Reaction condition: 3.1g of MgO hydrated in 77ml of simplified GWB (i.e. 1M MgCl2 +3.6 M NaCl)

Simplified GWB density = 1.1992 g/ml recorded in WIPP-MgO-CBD-26, p82

Calculation

Molecular weight of MgCl2 in cell B4 = Molecular weight of Mg in cell G2 + 2 x Molecular weight of Cl in cell G4 Molecular weight of NaCl in cell B5 = Molecular weight of Na in cell G3 + Molecular weight of Cl in cell G4 Molecular weight of MgO in cell B6 = Molecular weight of Mg in cell G2 + Molecular weight of O in cell G5

The mass of salt in one liter of brine in cell A11 = 1M MgCl2 x Molecular weight of MgCl2 +3.6 M NaCl x molecular weight of NaCl

The mass of water in 77ml of brine in cell B11 = the weight of 77 ml brine- weight of salts in 77 ml of brine =

77 ml x brine density - 77 ml / 1000 ml x (1 M MgCl2 x molcular weight of MgCl2 +3.6 M NaCl x molecular weight of NaCl)

The amount (mole) of MgO in one kg of water in cell F11 = (3.1 g MgO / molecular weight of MgO)/ volume of water in 77 ml of brine x 1000 ml of water / kg water

Molality to molarity conversion factor in cell H11= 77 ml brine/ volume of water in 77 ml of brine

Output

The amount of salts in one liter of brine in Cell A11 is going to be used in EQ3 input file "sgwbb.3i"

The amount (mole) of MgO in one kg of water in Cell F11 is going to be used in EQ6 input file " sgwbb-77.6i"

The molality to molarity conversion factor in cell H11 will be used in Excel file "plots (review)", on worksheet "calculated molality", Cell CF5

Page 1 MgO in brine xls Datasheet "SGWB" Output

		#5066#153#161111111111111111111111111111111			
11ml	1M MgCl2 + 3.6M NaCl	Mg (g/mol)	24.305		
3.0 g	MgO	Na (g/mol)	22.989768		
MgCl2 (g/mole)	95.2104	Cl (g/mol)	35.4527		
NaCl (g/mole)	58.44247	O (g/mol)	15.9994		
MgO (g/mole)	38.98917				
Density (simplified GWB	3)) (g/ml)1 1.1992 (wipp-MgO-CBD-26, p82)				
		moles of			
	Water in 11ml of	MgO/kg of			
	brine (g)	water (mol/kg)			
	9.8296	7.8279			
Input	Reaction condition: 3.0g of MgO hydra	ted in 11ml of simplified GWB (i	e. 1M MgCl2 +3.6 M NaCl)		
·	Simplified GWB density = 1.1992 g/l re	corded in WIPP-MgO-CBD-26,	82		
Calculation	Molecular weight of MgCl2 in cell B36 =	Molecular weight of MgCl2 in cell B36 = Molecular weight of Mg in cell G34 + 2 x Molecular weight of Cl in cell G37			
	Molecular weight of NaCl in cell B37 =	Molecular weight of NaCl in cell B37 = Molecular weight of Na in cell G35 + Molecular weight of Cl in cell G36			
		Molecular weight of MgO in cell B38 = Molecular weight of Mg in cell G34 + Molecular weight of O in cell G37			
	The mass of water in 11 ml of brine in o	The mass of water in 11 ml of brine in cell B43 = the weight of 11 ml brine - salts in the brine =			
	11 ml x brine density - 11 ml / 1000 ml	11 ml x brine density - 11 ml / 1000 ml x (1M MgCl2 x molcular weigt of MgCl2 + 3.6 M NaCl x molecular weight of NaCl)			
	The amount (mole) of MgO in one kg o	The amount (mole) of MgO in one kg of water in cell F43 = (3.0g / molecular weight of MgO) / volume of water in 11 ml of brine x 1000 ml of water / kg water			

The amount (mole) of MgO in one kg of water in Cell F43 is going to be used in EQ6 input file " sgwbb-11.6i"

Page 2

MgO in brine xls Datasheet "SGWB" Input

		MW		
77ml	GWB	Mg (g/mol)	24.305 H	1.00794
3.1 g	MgO	Na (g/mol)	22.989768	
	v	CI (g/mol)	35.4527	
		O (g/mol)	15.9994	

MgO (g/mole) 38.98917
Density (GWB) (g/ml) 1.2368

 grams of salt per liter of brine (g/L)
 Water in 77 ml of brine (g)
 moles of MgO/kg of water (mol/kg)

 348.8832
 68.3696
 1.162

Reaction condition: 3.1g of MgO hydrated in 77ml of GWB (brine recipe = SP 20-4 appendix B)

GWB density = 1.2368 g/ml, according to SP 20-4

Calculation Molecular weight of MgO in cell B6 = Molecular weight of Mg in cell G2 + Molecular weight of O in cell G5

The mass of salt in one liter of brine in cell A11 = (total weight of salt - water in salts Na2B4O710H2O, MgCl2 6H2O and CaCl2 2H2O) / liter of brine

(see SP20-4 Appendix A for total weight of salt, Appendix B for concentration of Na2B4O710H2O, MgCl2 6H2O, CaCl2 2H2O)

The amount of water in 77 ml of brine in cell B11 = the weight of 77 ml brine- salts in the brine =

77 ml x brine density - 77 ml / 1000 ml x (total weight of salt in 1L of GWB from SP 20-4, appendix A,B)

The amount (mole) of MgO in one kg of water in cell F11= (3.1 g MgO / molecular weight of MgO)/ volume of water in 77 ml of brine x 1000 ml of water / kg water

Output The amount (mole) of MgO in one kg of water in Cell F11 is used in the EQ6 input file "gwb-77.6i"

Page 1 MgO in brine.xls Datasheet "GWB" 11 ml 3.0 g GWB MgO

MgO (g/mole) Density (GWB) (g/ml) 38.98917 1.2368

Water in 11ml of brine

(g)

9.7671

MgO mole/kg of water (mol/kg)

7.8779

Input

Reaction condition: 3.0g of MgO hydrated in 11ml of GWB GWB density = 1.2368 g/ml recorded in WIPP-MgO-CBD-26, p82

Calculation

The mass of water in 11 ml of brine in cell B40 = the weight of 11 ml brine- weight of salts in the brine =

11 ml x brine density - 11 ml / 1000 ml x (total weight of salts in SP 20-4 appendix A)

The amount (mole) of MgO in one kg of water in cell F40 = (3.0g / molecular weight of MgO) / volume of water in 11 ml of brine x 1000 ml of water / kg water

Output

The amount (mole) of MgO in one kg of water in Cell F40 is going to be used in EQ6 input file "gwb-11.6i"

Page 2 MgO in brine.xls Datasheet "GWB" Input

		MW		
77ml	ERDA-6	Mg (g/mol)	24.305 H	1.00794
3.1 g	MgO	Na (g/mol)	22.989768	
J	3 ,	CI (g/mol)	35.4527	
		O (g/mol)	15.9994	
MgO (g/mole)	38.98917			

Density (ERDA) (g/ml)	1.1918	
	Water in 77 ml of	moles of MgO/kg
Salt (g)	brine (g)	of water (mol/kg)
300.00	055 68.6682	1,1579

moles of CaO/kg of water (mol/kg) 0.007662417

Reaction condition: 3.1g of MgO hydrated in 77ml of ERDA-6 (brine recipe = SP 20-4 appendix B)
ERDA-6 density = 1.1918 g/ml, according to SP 20-4

The weight ratio of CaO to MgO = 0.63 / 95.2 (see table 8 of Experimental work conducted on MgO characterization and hydration, Deng et al, 2008)

Molecular weight of MgO in cell B6 = Molecular weight of Mg in cell G2 + Molecular weight of O in cell G5 Calculation The mass of salt in one liter of brine in cell A11 = (total weight of salt - water in salts Na2B4O710H2O, MgCl2 6H2O and CaCl2 2H2O) / liter of brine

(see SP20-4 appendix A for total weight of salt, appendix B for concentration of Na2B4O710H2O, MgCl2 6H2O, CaCl2 2H2O) The amount of water in 77 ml of brine in cell B11 = the weight of 77 ml brine - salts in the brine =

77 ml x brine density - 77 ml / 1000 ml x (total weight of salt in SP20-4 appendix A)

The amount (mole) of MgO in one kg of water in cell F11 = (3.1g / molecular weight of MgO)/ water in 77 ml of brine x 1000 ml of water / kg water

The amount (mole) of CaO in one kg of water in cell F15 = mole of MgO in one kg of water in cell F11 x (0.63/95.2).

The amount (mole) of CaO in one kg of water in cell F15 will be used in EQ6 input file " erdca-77.6i" Output

The amount (mole) of MgO in one kg of water in Cell F11 is going to be used in EQ6 input file "erdca-78.6i"

Page 1. MgO in brine xls Datasheet "EDRA-6"

11 ml 3.0 g	ERDA-6 MgO		
Density(ERDA-6) (g/ml)	1.1918		
	Water in 11 ml of brine (g) 9.8097	moles of MgO/kg of water (mole/kg) 7.8437	
		moles of CaO/kg of water (mol/kg) 0.051906699	
Input	Reaction condition: 3.0 g of MgO hydrated in 11 ml of ERDA-6 (brine recipe = SP 20-4 appendix B) ERDA-6 density = 1.1918 g/ml, according to SP 20-4 The ratio of CaO to MgO =0.63 / 95.2 (see table 8 of Experimental work conducted on MgO characterization and hydration, Deng et al, 2008)		
Calculation	Molecular weight of MgO in cell B6 = Molecular weight of Mg in cell G2 + Molecular weight of O in cell G5 The amount of water in 11 ml of brine in cell B40 = the weight of 11 ml brine- salts in the brine = 11 ml x brine density - 11 ml / 1000 ml x (total weight of salt in SP20-4 appendix A) The amount (mole) of MgO in one kg of water in cell F40 = (3.0g / molecular weight of MgO)/ water in 11 ml of brine x 1000 ml of water / kg water The amount (mole) of CaO in one kg of water in cell F44 = mole of MgO in one kg of water in cell F43 x (0.63/95.2).		
Output	The amount (mole) of CaO in one I The amount (mole) of MgO in one	kg of water in cell F40 will be used in EQ6 input file " erdca-11.6i" kg of water in Cell F44 is going to be used in EQ6 input file " erdca-12.6i"	

Page 2 MgO in brine.xls Datasheet "EDRA-6"